K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2019

Để \(A\in Z\)thì :

n + 2 \(⋮\)n - 5

n - 5 + 7 \(⋮\)n - 5

\(7⋮n-5\)

\(\Rightarrow n-5\inƯ\left(7\right)\)

                  * Làm nốt *

                                   #Louis

30 tháng 4 2019

\(A=\frac{n+2}{n-5}\)

\(=\frac{n-5+7}{n-5}\)

\(=1+\frac{7}{n-5}\)

Để A nguyên thì \(\frac{7}{n-5}\)nguyên

\(\Rightarrow\)\(n-5\inƯ_{\left(7\right)}=\left\{-7,-1,1,7\right\}\)

\(\Rightarrow\)\(n\in\left\{-2,4,6,12\right\}\)

vậy...

14 tháng 4 2020

\(a,\text{ Để A }\in\text{ Z }\Leftrightarrow\text{ }\left(n+1\right)\inƯ\left(2\right)\)

\(\text{Mà }Ư\left(2\right)=\left\{\pm1;\pm2\right\}\)

\(\text{Do đó:}\) \(n+1=1\Leftrightarrow n=0\)

\(\text{hoặc }n+1=-1\Leftrightarrow n=-2\)

\(\text{hoặc }n+1=2\Leftrightarrow n=1\)

\(\text{hoặc }n+1=-2\Leftrightarrow n=-3\)

\(\text{Vậy: A }\in Z\Leftrightarrow n=\left\{0;-2;1;-3\right\}.\)

\(\text{a) Để B}\in Z\Leftrightarrow n-2\inƯ\left(3\right)\)

\(\text{Mà }Ư\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\text{Do đó: }n-2=1\Leftrightarrow n=3\)

\(\text{hoặc }n-2=-1\Leftrightarrow n=1\)

\(\text{hoặc }n-2=3\Leftrightarrow n=5\)

\(\text{hoặc }n-2=-3\Leftrightarrow n=-1\)

\(\text{Vậy: B}\in Z\Leftrightarrow n=\left\{3;1;5;-1\right\}.\)

14 tháng 4 2020

ĐK n≠-1

a, ta có A=\(\frac{2}{n+1}\) để A∈Z ta có

2⋮(n+1)

=> n+1∈Ư(2)\(\left\{1;-1;2;-2\right\}\)

n+1=1 =>n=0 tm

n+1=-1 =>n=-2 tm

n+1=2 =>n=1 tm

n+1=-2 =>n=-3 tm

Vậy vs n=0;-2;1;-3 thì A∈Z

#Mx bài khác tương tự

Bài 1 : Cho a, b, c khác 0. Biết x, y, z thỏa mãn:\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)Tính giá trị D = x ^2017 + y^2017 + z^2017Bài 2 : Cho \(\frac{a}{x+y}=\frac{13}{x+2};\frac{169}{\left(x+z\right)^2}=\frac{-27}{\left(z-y\right)\left(2x+y+z\right)}\)Tính A = \(\frac{2a^3-12a^2+17a-2}{a-2}\)bài 3 : Cho a, b, c khác nhau thỏa mãn :\(\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}+\frac{a^2+b^2-c^2}{2ab}=1\)Chứng minh : 2 phân...
Đọc tiếp

Bài 1 : Cho a, b, c khác 0. Biết x, y, z thỏa mãn:
\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
Tính giá trị D = x ^2017 + y^2017 + z^2017
Bài 2 : Cho \(\frac{a}{x+y}=\frac{13}{x+2};\frac{169}{\left(x+z\right)^2}=\frac{-27}{\left(z-y\right)\left(2x+y+z\right)}\)
Tính A = \(\frac{2a^3-12a^2+17a-2}{a-2}\)
bài 3 : Cho a, b, c khác nhau thỏa mãn :
\(\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}+\frac{a^2+b^2-c^2}{2ab}=1\)
Chứng minh : 2 phân thức có giá trị = 1 và 1 phân thức có giá trị = -1
Bài 4 : Cho A = \(\frac{n^3+2n^2-1}{n^3+2n^2+2n+1}\)
a, Rút gọn A
b, Cm : Nếu n thuộc Z thì A tối giản
Bài 5 : Cho n thuộc Z, n nhỏ hơn hoặc = 1
CMR : 1^3 + 2^3 + 3^3 +....+ n^3 = \(\frac{n^2\left(n+1\right)^2}{4}\)
Bài 6 : Cho M =\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
N =\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)
a, Cm : nếu M = 1 thì N = 0
b, Cm : Nếu N = 0 thì có nhất thiết M = 1 ko ?

0
7 tháng 10 2020

1.

\(10x=|x+\dfrac{1}{10}|+|x+\dfrac{2}{10}|+...+|x+\dfrac{9}{10}| \ge 0\)

\(\Rightarrow x\ge0\)

\(pt\Leftrightarrow x+\frac{1}{10}+x+\frac{2}{10}+...+x+\frac{9}{10}=10x\)

\(\Leftrightarrow x=\frac{1}{10}+\frac{2}{10}+...+\frac{9}{10}=\frac{9}{2}\)

\(\Rightarrow x=\frac{9}{2}\)

7 tháng 10 2020

4.

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{a}{b+3c}=\frac{b}{c+3a}=\frac{c}{a+3b}=\frac{a+b+c}{4\left(a+b+c\right)}=\frac{1}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}4a=b+3c\left(1\right)\\4b=c+3a\left(2\right)\\4c=a+3b\left(3\right)\end{matrix}\right.\)

Từ \(\left(1\right);\left(2\right)\Rightarrow4a=b+3\left(4b-3a\right)\)

\(\Rightarrow12a=12b\Rightarrow a=b\left(4\right)\)

Từ \(\left(1\right);\left(3\right)\Rightarrow4c=a+3\left(4a-3c\right)\)

\(\Rightarrow12a=12c\Rightarrow a=c\left(5\right)\)

Từ \(\left(4\right);\left(5\right)\Rightarrow a=b=c\left(đpcm\right)\)

28 tháng 4 2018

Để \(A\in Z\)thì \(n+2⋮n-5\)

=> \(\left(n-5\right)+7⋮n-5\)

Mà \(n-5⋮n-5\)

=> \(7⋮n-5\)

=> \(n-5\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

lập bảng:

n-5-7-117
n-24612

Vậy \(n\in\left\{-2;4;6;12\right\}\)

28 tháng 4 2018

Để \(A\in Z\)

\(\Rightarrow n+2⋮n-5\Leftrightarrow n-5+7⋮n-5\)

Mà \(n-5⋮n-5\Rightarrow7⋮n-5\)

\(\Rightarrow n-5\inƯ\left(7\right)=\left(\pm1;\pm7\right)\)

\(\Rightarrow n\in\left(6;4;12;-2\right)\)

Vậy .................................... thì A thuộc Z

20 tháng 10 2019

Tiếp câu b nha

\(A=\frac{n^5}{120}+\frac{n^4}{10}+\frac{7n^3}{24}+\frac{5n^2}{12}+\frac{n}{5}\)

\(=\frac{n^5+10n^4+35n^3+50n^2+24n}{120}\)

Ta có:\(n^5+10n^4+35n^3+50n^2+24n\)

\(=n\left(n^4+10x^3+35x^2+50x+24\right)\)

\(=n\left(n^4+2n^3+8n^3+16n^2+19n^2+38n+12n+4\right)\)

\(=n\left(n+3\right)\left(n^3+3n^2+5n^2+15n+4n+12\right)\)

\(=n\left(n+2\right)\left(n+3\right)\left(n+4n+n+4\right)\)

\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮3;5;8\)

\(ƯC\left(3;5;8\right)=1\)

\(\Rightarrow n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮120\)

Vậy A chia hết cho 120

20 tháng 10 2019

a) \(\left(n+3\right)^2-\left(n-1\right)^2=\left(n+3-n+1\right)\left(n+3+n-1\right)\)

\(=4\left(2n+2\right)=8\left(n+1\right)⋮8\forall n\in\mathbb{N}\) (đpcm)

b) Thử quy đồng hết lên đi (MSC = 12) rồi phân tích tiếp xem, đang bận ...

22 tháng 7 2016

Để A thuộc Z  thì n + 2 chia hết n - 5

<=> (n - 5) + 7 chia hết n - 5

=> 7 chia hết n - 5

=> n - 5 thuộc Ư(7) = {-1;1;-7;7}

=< n = {4;6;-2;12}

22 tháng 7 2016

Để A thuộc Z thì n + 2 chia hết cho n - 5

=> n - 5 + 7 chia hết cho n - 5

Do n - 5 chia hết cho n - 5 => 7 chia hết cho n - 5

=> n - 5 thuộc {1 ; -1 ; 7 ; -7}

=> n thuộc {6 ; 4 ; 12 ; -2}

27 tháng 4 2015

Để A thuộc Z thì n+2 chia hết cho n-5

                   Mà n-5 chia hết cho n-5

=> (n+2)-(n-5) chia hết cho n-5

=> 7 chia hết cho n-5

=> n-5 thuộc Ư(7)

=> n-5 thuộc {-7;-1;1;7}

=> n thuộc {-2;4;6;12}

28 tháng 4 2018

Để A \(\in\)Z

=> ( n + 2 ) \(⋮\)( n - 5 )

=> ( n - 5 + 7 )\(⋮\) ( n  - 5 )

=> 7\(⋮\) ( n  - 5 )

=> n - 5 \(\in\)Ư ( 7 )

=> n - 5 \(\in\)( 1, -1 , 7 , - 7)

=> n \(\in\)( 6 ; 4 ; 12 ; - 2 )

23 tháng 7 2016

Đề bài có chút sai xót nha bn, phải là tìm n để A thuộc Z

Để A nguyên thì n + 2 chia hết cho n - 5

=> n - 5 + 7 chia hết cho n - 5

Do n - 5 chia hết cho n - 5 => 7 chia hết cho n - 5

=> \(n-5\in\left\{1;-1;7;-7\right\}\)

=> \(n\in\left\{6;4;12;-2\right\}\)

23 tháng 7 2016

Ta có: \(A=\frac{n+2}{n-5}=\frac{\left(n-5\right)+7}{n-5}=1+\frac{7}{n-5}\)

Để A nguyên thì 7 chia hết n - 5

=> n - 5 thuộc Ư(7) = {-1;1-;7;7}

=> n = {4;6;-2;12}

5 tháng 4 2017

Ta có : \(\dfrac{n+2}{n-5}=\dfrac{n-5+7}{n-5}=\dfrac{n-5}{n-5}+\dfrac{7}{n-5}=1+\dfrac{7}{n-5}\)

Mà A thuộc Z =>\(1+\dfrac{7}{n-5}\in Z=>\dfrac{7}{n-5}\in Z\)

=>\(7⋮\left(n-5\right)=>\left(n-5\right)\inƯ\left(7\right)=\left(1;-1;7;-7\right)\)

=>\(\left\{{}\begin{matrix}n-5=1=>n=6\\n-5=-1=>n=-4\\n-5=7=>n=12\\n-5=-7=>n=-2\end{matrix}\right.\)

Vậy n=-4;-2;6;12 là nghiệm của phương trình trên

29 tháng 5 2017

n - 5 = -1 \(\Rightarrow\) n = 4 chứ o phải là - 4

vậy : n = 6 ; n = 4 ; n = 12 ; n = -2 mới đúng