Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài có chút sai xót nha bn, phải là tìm n để A thuộc Z
Để A nguyên thì n + 2 chia hết cho n - 5
=> n - 5 + 7 chia hết cho n - 5
Do n - 5 chia hết cho n - 5 => 7 chia hết cho n - 5
=> \(n-5\in\left\{1;-1;7;-7\right\}\)
=> \(n\in\left\{6;4;12;-2\right\}\)
để A thuộc Z
=>n+2 chia hết n-5
=>n-5+7 chia hết n-5
=>7 chia hết n-5
=>n-5 thuộc {1,-1,7,-7}
=>n thuộc {6,4,12,-2}
mk nhanh nhất nhé
Ta có \(A=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=\frac{n-5}{n\cdot5}+\frac{7}{n-5}=1+\frac{7}{n-5}\)
Để \(A\in Z\Rightarrow\frac{7}{n-5}\in Z\) \(\Rightarrow\) 7 chia hết cho n-5
\(\Rightarrow\left(n-5\right)\in\text{Ư}\left(7\right)=\left\{-7;-1;1;7\right\}\)
n-5 | -7 | -1 | 1 | 7 |
n | -2 | 4 | 6 | 12 |
TM | TM | TM | TM |
Vậy để A thuộc Z thì \(x\in\left\{-2;4;6;12\right\}\)
Để \(A\in Z\)thì \(n+2⋮n-5\)
=> \(\left(n-5\right)+7⋮n-5\)
Mà \(n-5⋮n-5\)
=> \(7⋮n-5\)
=> \(n-5\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
lập bảng:
n-5 | -7 | -1 | 1 | 7 |
n | -2 | 4 | 6 | 12 |
Vậy \(n\in\left\{-2;4;6;12\right\}\)
Để \(A\in Z\)
\(\Rightarrow n+2⋮n-5\Leftrightarrow n-5+7⋮n-5\)
Mà \(n-5⋮n-5\Rightarrow7⋮n-5\)
\(\Rightarrow n-5\inƯ\left(7\right)=\left(\pm1;\pm7\right)\)
\(\Rightarrow n\in\left(6;4;12;-2\right)\)
Vậy .................................... thì A thuộc Z
A=n+3 chia hết cho n+1
mà n+3 =(n+1)+2
vì n+1 chia hết cho n+1
nên A chia hết cho n+1
khi2chia hết cho n+1
suy ra n+1 thuộc ước của 2
suy ra n+1 thuộc {1;2}
mà n thuộc Z Suy ra n thuộc { 0;1}
Câu 2 dựa theo cách trên mà tự làm
\(\frac{n+3}{n+1}=\frac{n+1+2}{n+1}=\frac{n+1}{n+1}+\frac{2}{n+1}=1+\frac{2}{n+1}\)
Để \(A\in Z\)<=> n + 1 \(\in\)Ư(2) = {-1;1;-2;2}
n + 1 | -1 | 1 | -2 | 2 |
n | -2 | 0 | -3 | 1 |
\(\frac{3n-5}{n-4}=\frac{3n-12-17}{n-4}=\frac{3\left(n-4\right)-17}{n-1}=\frac{3\left(n-4\right)}{n-4}-\frac{17}{n-4}\)
Để \(B\in Z\) <=> n - 4 \(\in\)Ư(17) = {1;-1;17;-17}
n - 4 | 1 | -1 | 17 | -17 |
n | 5 | 3 | 21 | -13 |
Để A thuộc Z thì n+2 chia hết cho n-5
Mà n-5 chia hết cho n-5
=> (n+2)-(n-5) chia hết cho n-5
=> 7 chia hết cho n-5
=> n-5 thuộc Ư(7)
=> n-5 thuộc {-7;-1;1;7}
=> n thuộc {-2;4;6;12}
Để A \(\in\)Z
=> ( n + 2 ) \(⋮\)( n - 5 )
=> ( n - 5 + 7 )\(⋮\) ( n - 5 )
=> 7\(⋮\) ( n - 5 )
=> n - 5 \(\in\)Ư ( 7 )
=> n - 5 \(\in\)( 1, -1 , 7 , - 7)
=> n \(\in\)( 6 ; 4 ; 12 ; - 2 )
Gọi ƯCLN(2n + 1 ; 3n + 2)=d
Nếu ta c/m d = 1 thì \(\frac{2n+1}{3n+2}\) là p/s tối giản
ta có 2n + 1 chia hết cho d => 3(2n + 1) chia hết cho d <=> 6n + 3 chia hết cho d
3n + 2 chia hết cho d => 2(3n + 2) chia hết cho d <=> 6n + 4 chia hết cho d
Vậy (6n + 4) - (6n + 3) chia hết cho d => 1 chia hết cho d (dpcm)
\(A=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=\frac{n-5}{n-5}+\frac{7}{n-5}=1+\frac{7}{n-5}\)
Để \(1+\frac{7}{n-5}\) là số nguyên <=> \(\frac{7}{n-5}\) là số nguyên
=> n - 5 \(\in\) Ư(7) = { - 7; - 1 ; 1 ; 7 }
=> n - 5 = { - 7; - 1 ; 1 ; 7 }
=> n = { - 2; 4; 6; 12 }
A=n+2/n-5=n-5+7/n-5=n-5/n-5+7/n-5=1+7/n-5
do7chia hết cho n-5=>n-5 thuộc Ư(7)
=>n-5={-7;-1;1;7}=>n={-2;4;6;12}
A = \(\frac{n+2}{n-5}\)= \(\frac{n-5+7}{n-5}\)= \(1+\frac{7}{n-5}\)
Để \(1+\frac{7}{n-5}\)là số nguyên \(\Leftrightarrow\frac{7}{n-5}\)là số nguyên.
=> n - 5 \(\in\)Ư(7) = {-7; -1; 1; 7}
=> n \(\in\){-2; 4; 6; 12}
Vậy n \(\in\){-2; 4; 6; 12}
~~~
#Sunrise
Để A thuộc Z thì n + 2 chia hết n - 5
<=> (n - 5) + 7 chia hết n - 5
=> 7 chia hết n - 5
=> n - 5 thuộc Ư(7) = {-1;1;-7;7}
=< n = {4;6;-2;12}
Để A thuộc Z thì n + 2 chia hết cho n - 5
=> n - 5 + 7 chia hết cho n - 5
Do n - 5 chia hết cho n - 5 => 7 chia hết cho n - 5
=> n - 5 thuộc {1 ; -1 ; 7 ; -7}
=> n thuộc {6 ; 4 ; 12 ; -2}