K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2019

Ta có : \(x^4-x+\frac{1}{2}=x^4-x^2+\frac{1}{4}+x^2-x+\frac{1}{4}=\left(x^2-\frac{1}{2}\right)^2+\left(x-\frac{1}{2}\right)^2>0\forall x\inℤ\)

5 tháng 9 2017

bn ... ơi...mik ...bỏ...cuộc ...hu...hu

5 tháng 9 2017

. Huhu T^T mong sẽ có ai đó giúp mình "((

4 tháng 7 2018

1/ 

a, (x-3)2+(4+x)(4-x)=10

<=>x2-6x+9+(16-x2)=10

<=>-6x+25=10

<=>-6x=-15

<=>x=5/2

còn lại tương tự a 

2/

a, \(a^2\left(a+1\right)+2a\left(a+1\right)=\left(a^2+2a\right)\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\)

Vì a(a+1)(a+2) là tích 3 nguyên liên tiếp nên a(a+1)(a+2) chia hết cho 2,3

Mà (2,3)=1

=>a(a+1)(a+2) chia hết cho 6 (đpcm)

b, \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\)

Vì \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+1\ge1>0\left(đpcm\right)\)

c, \(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)(đpcm)

d, \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\)

Vì \(-\left(x-2\right)^2\le0\Rightarrow-\left(x-2\right)^2-1\le-1< 0\) (đpcm)

5 tháng 7 2018

g,\(-4\left(x-1\right)^2+\left(2x+1\right)\left(2x-1\right)=-3\)

\(\Leftrightarrow-4\left(x^2-2x+1\right)+4x^2-1=-3\)

\(\Leftrightarrow-4x^2+8x-4+4x^2-1=-3\)

\(\Leftrightarrow8x=2\)

\(\Leftrightarrow x=\frac{1}{4}\)

bn xem lại đi nha

10 tháng 9 2017

\(a.\left(x^3-16x\right)=0\)

\(\Leftrightarrow x\left(x^2-16\right)=0\)

\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x-4=0\\x+4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=4\\x=-4\end{cases}}}\)

Uầy lười lm waa

10 tháng 9 2017

. Hãy nhiệt tình lên :>> Chúng ta là công dân cùng một nước,phải giúp đỡ nhau a~~~

28 tháng 3 2020

a, (x-1)x+2 = (x-1)x+6

<=> (x-1)x . (x-1)2 = (x-1)x . (x-1)6

<=> (x-1)2 = (x-1)6

<=> \(\orbr{\begin{cases}x-1=0\\x-1=1\end{cases}}\)

<=>\(\orbr{\begin{cases}x=0+1\\x=1+1\end{cases}}\)

<=> \(\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

Vậy x thuộc {1,2}

b, 19.x2+x = 0

<=> x2+x = 0

<=> x2 . xx = 0

<=> x = 0

Vậy x = 0

7 tháng 10 2017

\(x^2-x+1>0\)

Ta có:

\(x^2-x+1\)

=\(\left(x\right)^2-2\left(\frac{1}{2}\right)\left(x\right)+\left(\frac{1}{2}\right)^2-\frac{1}{4}+1\)

=\(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)\(\forall x\in R\)