Tìm x biết:
(6-x). (x-1/3)<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
( x + 1 ) 3 – ( x – 1 ) 3 – 6 ( x – 1 ) 2 = - 10 ⇔ x 3 + 3 x 2 + 3 x + 1 – ( x 3 – 3 x 2 + 3 x – 1 ) – 6 ( x 2 – 2 x + 1 ) = - 10 ⇔ x 3 + 3 x 2 + 3 x + 1 – x 3 + 3 x 2 – 3 x + 1 – 6 x 2 + 12 x – 6 = - 10
ó 12x – 4 = -10
ó 12x = -10 + 4
ó 12x = -6
ó x = - 1 2
Đáp án cần chọn là: A
\(1,\sqrt{3}x-3=\sqrt{27}\)
\(\Leftrightarrow\sqrt{3}x-3=3\sqrt{3}\)
\(\Leftrightarrow\sqrt{3}\left(x-\sqrt{3}\right)=3\sqrt{3}\)
\(\Leftrightarrow x-\sqrt{3}=3\)
\(\Leftrightarrow x=3+\sqrt{3}\)
\(2,\sqrt{2}x-\sqrt{28}=\sqrt{32}\)
\(\Leftrightarrow\sqrt{2}x-2\sqrt{7}=4\sqrt{2}\)
\(\Leftrightarrow\sqrt{2}x=4\sqrt{2}+2\sqrt{7}\)
\(\Leftrightarrow x=\dfrac{\sqrt{2^2}\left(2\sqrt{2}+\sqrt{7}\right)}{\sqrt{2}}\)
\(\Leftrightarrow x=\sqrt{2}\left(2\sqrt{2}+\sqrt{7}\right)\)
\(\Leftrightarrow x=4+\sqrt{14}\)
\(3,\sqrt{6}x-2\sqrt{6}=\sqrt{54}\)
\(\Leftrightarrow\sqrt{6}\left(x-2\right)=3\sqrt{6}\)
\(\Leftrightarrow x-2=3\)
\(\Leftrightarrow x=5\)
\(4,\sqrt{3}x-\sqrt{2}x=\sqrt{3}+\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{3}-\sqrt{2}\right)x=\sqrt{3}+\sqrt{2}\)
\(\Leftrightarrow x=\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\)
a: Ta có: \(2x\left(x-1\right)-2x^2=-6\)
\(\Leftrightarrow2x^2-2x-2x^2=-6\)
\(\Leftrightarrow x=3\)
b: Ta có: \(2x\left(x-3\right)+5\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)
Ta có :
\(\left(6-x\right).\left(x-\frac{1}{3}\right)< 0\)
\(\Rightarrow6-x\text{ và }x-\frac{1}{3}\)trái dấu
+) Xét \(6-x< x-\frac{1}{3}\)
\(\Rightarrow\hept{\begin{cases}6-x< 0\\x-\frac{1}{3}>0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x>6\\x>\frac{1}{3}\end{cases}}\Leftrightarrow x>6\)
+) Xét \(6-x>x-\frac{1}{3}\)
\(\Rightarrow\hept{\begin{cases}6-x>0\\x-\frac{1}{3}< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< 6\\x< \frac{1}{3}\end{cases}}\Leftrightarrow x< \frac{1}{3}\)