K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2019

Bài 1: Áp dụng Định lý Pythagoras cho tam giác vuông ABC:AB2+AC2=BC2=>BC2=122+162=400=>BC=20(cm).

 Áp dụng Định lý:"Trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác ABC:AM=\(\frac{1}{2}\)BC=\(\frac{1}{2}\).20=10cm

Do G là trọng tâm nên:AG=\(\frac{2}{3}\)AM=\(\frac{2}{3}\).10\(\approx\)6.7cm

Bài 2:

E D B C A H

a) Xét \(\Delta\)ABD và \(\Delta\)ACE:

      ADB=AEC=90

      BAC:chung

      AB=AC(\(\Delta\)ABC cân tại A)

=> \(\Delta\)ABD =\(\Delta\)ACE (Cạnh huyền-góc nhọn)

b) \(\Delta\)ABD =\(\Delta\)ACE (chứng minh trên)=>AD=AE=> \(\Delta\)AED cân tại A

c) Dễ thấy: H là trực tâm của tam giác ABC

    Mà  \(\Delta\)ABC cân tại A 

    Nên H cũng đồng thời là tam đường tròn ngoại tiếp tam giác ABC 

    Hay AH là đường trung trực của tam giác ABC

Bài 1: Cho \(\Delta ABC\)cân tại A có \(\widehat{A}=48\)độ.Gọi M là trung điểm của BC. Từ M kẻ MF vuông góc vs AC\(\left(F\in AC\right)\),ME vuông góc vs AB\(\left(E\in AB\right)\)            a)C/m: \(\Delta ABM=\Delta ACM\)               b)C/m: AE=AF          c)C/m: EF\(\\ \)BCBài 2: Cho f(x)=\(^{x^{2-mx-2043.}Xác}\)địh m. bt x=-5 là nghiệm của f(x)Bài 3: Cho \(\Delta ABC\)cân tại A có AB=AC=10cm, BC=16cm. Gọi M là trug điểm cạnh BC.         a)C/m...
Đọc tiếp

Bài 1: Cho \(\Delta ABC\)cân tại A có \(\widehat{A}=48\)độ.Gọi M là trung điểm của BC. Từ M kẻ MF vuông góc vs AC\(\left(F\in AC\right)\),ME vuông góc vs AB\(\left(E\in AB\right)\)            a)C/m: \(\Delta ABM=\Delta ACM\)               b)C/m: AE=AF          c)C/m: EF\(\\ \)BC

Bài 2: Cho f(x)=\(^{x^{2-mx-2043.}Xác}\)địh m. bt x=-5 là nghiệm của f(x)

Bài 3: Cho \(\Delta ABC\)cân tại A có AB=AC=10cm, BC=16cm. Gọi M là trug điểm cạnh BC.         a)C/m AM vuông BC   

b)Gọi G là trọng tâm của \(\Delta ABC,tính\)độ dài AM & AG

Bài 4 Cho \(\Delta ABC\)có AB=AC, gọi I là trug điểm cạnh BC. Vẽ ID vuông góc AB tãi D, IE vuông góc AC tại E.

a)C/m \(\Delta DBI=\Delta ECI\)         b)\(\Delta ADE\)cân              c)C/m: \(AB^2=AD^2+BD^2+2ID^2\)

Bài 5: Cho \(\Delta ABC\)cân tại A có cạnh đáy nhỏ hơn cạnh bên. Tia phân giác AM và đường cao BN cắt nhau tại K

a)C/m CK vuông góc BC               b)\(\widehat{ABK}=\widehat{ACK}\)            c)Bt AM=6cm&G là trọng tâm của\(\Delta ABC.tính\)độ dài GM?

(nhớ Vẽ hình nhoa) hiuhiuvuingaingung❤☘

0
Câu 1:a) \(\Delta ABC\)có BD và CE là 2 đường trung tuyến và \(BD^2+CE^2=\frac{9}{4}BC^2\). C/m \(BD⊥CE\)tại G.b)\(\Delta ABC\)có BC=a, AC=b, AB=c. Hai đường trung tuyến AM và BN vuông góc với nhau tại G. C/m\(a^2+b^2=5c^2\)Câu 2: Cho \(\Delta ABC\)cân tại A có BC=a và cạnh bên bằng cạnh huyền của tam giác vuông cân có cạnh góc vuông bằng a. Tính độ dài đường trung tuyến BM của \(\Delta ABC\)theo a.Câu 3: Cho \(\Delta ABC\),...
Đọc tiếp

Câu 1:

a) \(\Delta ABC\)có BD và CE là 2 đường trung tuyến và \(BD^2+CE^2=\frac{9}{4}BC^2\). C/m \(BD⊥CE\)tại G.

b)\(\Delta ABC\)có BC=a, AC=b, AB=c. Hai đường trung tuyến AM và BN vuông góc với nhau tại G. C/m\(a^2+b^2=5c^2\)

Câu 2: Cho \(\Delta ABC\)cân tại A có BC=a và cạnh bên bằng cạnh huyền của tam giác vuông cân có cạnh góc vuông bằng a. Tính độ dài đường trung tuyến BM của \(\Delta ABC\)theo a.

Câu 3: Cho \(\Delta ABC\), trung tuyến CD. Đường thẳng qua D và song song với BC cắt AC tại E. Đường thẳng qua D và song song với AC cắt BC tại F. Trên tia đối của tia BD lấy N sao cho BN=BD. Trên tia đối của tia CB lấy M sao cho CM=CF, gọi giao điểm của MD và AC là K. C/m N, F, K thẳng hàng.

Câu 4: Cho \(\Delta ABC\)có BC=2AB. Gọi M, I lần lượt là trung điểm của BC và BM. C/m AC=2AI và AM là tia phân giác của\(\widehat{CAI}\).

Câu 5: Cho \(\Delta ABC\),trung tuyến BM. Trên tia BM lấy 2 điểm G và K sao cho \(BG=\frac{2}{3}BM\) và G là trung điểm BK, gọi N là trung điểm KC , GN cắt CN tại O. C/m: \(GO=\frac{1}{3}BC\)  

(Bạn giải được câu nào thì giải, nhớ vẽ hình và ghi lời giải đầy đủ) 

0

Bài 1: 

Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là đường trung tuyến

Xét ΔABC có

AH là đường trung tuyến

BD là đường trung tuyến

AH cắt BD tại E

Do đó: E là trọng tâm của ΔABC

4 tháng 3 2023

câu 2 : 

a) có phải là chứng minh AM ⊥ BC không

xét ΔAMB và ΔAMC, ta có : 

AB = AC (2 cạnh bên của ΔABC cân tại A)

MB = MC (AM là đường trung tuyến của cạnh BC)

AM là cạnh chung

=> ΔAMB = ΔAMC (c.c.c)

=> \(\widehat{AMB}=\widehat{AMC}\) (2 cạnh tương ứng)

mà \(\widehat{AMB}+\widehat{AMC}=180^O\) (kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^O}{2}=90^O\)

=> AM ⊥ BC

4 tháng 3 2023

loading...