K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2019

De sai roi nha ban, pt nay chi co 1 nghiem thuc

18 tháng 11 2023

a: Đặt f(x)=x3+x-1

\(f\left(0\right)=0^3+0-1=-1\)

\(f\left(1\right)=1^3+1-1=1\)

Vì \(f\left(0\right)\cdot f\left(1\right)=-1< 0\)

nên f(x)=0 có ít nhất một nghiệm thuộc đoạn (-1;0)

=>Phương trình \(x^3+x-1=0\) có nghiệm

b: Đặt \(A\left(x\right)=4x^4+2x^2-x-3\)

\(A\left(-0,8\right)=4\cdot\left(-0,8\right)^4+2\cdot\left(-0,8\right)^2-\left(-0,8\right)-3=0,7184\)

\(A\left(-0,6\right)=4\cdot\left(-0,6\right)^4+2\cdot\left(-0,6\right)^2-\left(-0,6\right)-3=-1,161\)

\(A\left(0,8\right)=4\cdot0,8^4+2\cdot0,8^2-0,8-3=-0,881\)

\(A\left(1\right)=4\cdot1^4+2\cdot1^2-1-3=2\)

Vì \(A\left(-0,8\right)\cdot A\left(-0,6\right)< 0\)

nên phương trình A(x)=0 có ít nhất 1 nghiệm thuộc đoạn (-1;1)

Vì A(0,8)*A(1)<0

nên phương trình A(x)=0 có ít nhất 1 nghiệm thuộc đoạn (0,8;1)

=>phương trình \(4x^4+2x^2-x-3=0\) có ít nhất 2 nghiệm thuộc đoạn (-1;1)

17 tháng 5 2016

a) Hàm số f(x) = 2x3 + 6x + 1 là hàm đa thức nên liên tục trên R.

Mặt khác vì f(0).f(1) = 1.(-3) < 0 nên phương trình có nghiệm trong khoảng (1; 2).

Vậy phương trình f(x) = 0 có ít nhất hai nghiệm.

b) Hàm số g(x) = cosx - x xác định trên R nên liên tục trên R.

Mặt khác, ta có g(0).g() = 1. (-) < 0 nên phương trình đã cho có nghiệm trong khoảng (0; ).

17 tháng 5 2016

Hoàng anh gia lai và Võ Đong Anh Tuấn chắc chắn là 1 người

NV
9 tháng 3 2023

Đặt \(f\left(x\right)=\left(m^2-m+1\right)x^4-3x^3-1\)

\(f\left(x\right)\) là hàm đa thức nên liên tục trên mọi khoảng trên R

\(f\left(0\right)=-1< 0\)

\(f\left(3\right)=81\left(m^2-m+1\right)-55=81\left(m-\dfrac{1}{2}\right)^2+\dfrac{23}{4}>0\)

\(\Rightarrow f\left(0\right).f\left(3\right)< 0\Rightarrow\) pt có ít nhất 1 nghiệm thuộc \(\left(0;3\right)\)

\(f\left(-1\right)=m^2-m+2=\left(m-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\)

\(\Rightarrow f\left(-1\right).f\left(0\right)< 0\Rightarrow\) pt có ít nhất 1 nghiệm thuộc \(\left(-1;0\right)\)

\(\Rightarrow\) Pt có ít nhất 2 nghiệm thuộc \(\left(-1;3\right)\Rightarrow\) có ít nhất 2 nghiệm trên \(\left(-5;5\right)\)

20 tháng 5 2019

* Giả sử cả 3 pt đều có nghiệm kép hoặc vô nghiệm ta có : 

pt \(x^2-2ax+b=0\) (1) có \(\Delta_1'=\left(-a\right)^2-b=a^2-b\le0\)

pt \(x^2-2bx+c=0\) (2) có \(\Delta_2'=\left(-b\right)^2-c=b^2-c\le0\)

pt \(x^2-2cx+a=0\) (3) có \(\Delta_3'=\left(-c\right)^2-a=c^2-a\le0\)

\(\Rightarrow\)\(\Delta_1'+\Delta_2'+\Delta_3'=\left(a^2+b^2+c^2\right)-\left(a+b+c\right)\le0\) (*) 

Lại có : \(0< a,b,c< 3\)\(\Rightarrow\)\(\hept{\begin{cases}a\left(3-a\right)>0\\b\left(3-b\right)>0\\c\left(3-c\right)>0\end{cases}\Leftrightarrow\hept{\begin{cases}3a>a^2\\3b>b^2\\3c>c^2\end{cases}}}\)

\(\Rightarrow\)\(\left(a^2+b^2+c^2\right)-\left(a+b+c\right)< 3\left(a+b+c\right)-\left(a+b+c\right)=2\left(a+b+c\right)=6>0\)

trái với (*) 

Vậy có ít nhất một phương trình có hai nghiệm phân biệt 

cái kia chưa bt làm -_- 

NV
4 tháng 3 2023

Đặt \(f\left(x\right)=3x^4-3x^3-5x^2+2x+2\)

Hiển nhiên \(f\left(x\right)\) liên tục trên R cũng như mọi khoảng con của nó

\(f\left(-1\right)=1>0\)

\(f\left(-\dfrac{3}{4}\right)=-\dfrac{25}{256}< 0\)

\(f\left(0\right)=2>0\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(-1\right).f\left(-\dfrac{3}{4}\right)< 0\\f\left(-\dfrac{3}{4}\right).f\left(0\right)< 0\end{matrix}\right.\) \(\Rightarrow f\left(x\right)\) có ít nhất 2 nghiệm thuộc (-1;0) nên có ít nhất 2 nghiệm thuộc (-1;1)

NV
5 tháng 4 2022

Đề bài sai, ví dụ: với \(a=b=1\) thì \(x^2+x-1=0\) có 1 nghiệm thuộc \(\left(0;1\right)\) thỏa mãn yêu cầu

Nhưng \(x^2-2x+1=0\) có nghiệm kép, không phải hai nghiệm phân biệt

4 tháng 4 2017

a) Hàm số f(x) = 2x3 + 6x + 1 là hàm đa thức nên liên tục trên R.

Mặt khác vì f(0).f(1) = 1.(-3) < 0 nên phương trình có nghiệm trong khoảng (1; 2).

Vậy phương trình f(x) = 0 có ít nhất hai nghiệm.

b) Hàm số g(x) = cosx – x xác định trên R nên liên tục trên R.

Mặt khác, ta có g(0).g(π/2) = 1. (-π/2) < 0 nên phương trình đã cho có nghiệm trong khoảng (0; π/2).

4 tháng 4 2017

a) Hàm số f(x) = 2x3 + 6x + 1 là hàm đa thức nên liên tục trên R.

Mặt khác vì f(0).f(1) = 1.(-3) < 0 nên phương trình có nghiệm trong khoảng (1; 2).

Vậy phương trình f(x) = 0 có ít nhất hai nghiệm.

b) Hàm số g(x) = cosx - x xác định trên R nên liên tục trên R.

Mặt khác, ta có g(0).g() = 1. (-) < 0 nên phương trình đã cho có nghiệm trong khoảng (0; ).