K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2019

Ta có: \(x^2\ge0\forall x\)

\(\Rightarrow x^2+1\ge1\forall x\)

Vậy đa thức p(x) vô nghiệm

26 tháng 4 2019

Ta có : \(P\left(x\right)=x^2+1\)

 => \(x^2+1=0\)

=> \(x^2=\left(-1\right)\)

=> \(P\left(x\right)=x^2+1\)  Vô nghiệm

24 tháng 7 2020

\(\hept{\begin{cases}x^2\ge0\\\left(x-1\right)^2\ge0\end{cases}}\)\(\Rightarrow x^2+\left(x-1\right)^2\ge0\)

Dấu "=" khi: \(\hept{\begin{cases}x^2=0\\\left(x-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=1\end{cases}}}\)(Điều này vô lý)

Vậy dấu "=" không thể xảy ra hay đa thức đã cho không nhận giá trị bằng 0 (vô nghiệm)

24 tháng 7 2020

\(x^2+\left(x-1\right)^2\)

\(\hept{\begin{cases}x^2\ge0\forall x\\\left(x-1\right)^2\ge0\forall x\end{cases}\Rightarrow}x^2+\left(x-1\right)^2\ge0\forall x\)

=> Vô nghiệm ( đpcm ) 

3 tháng 8 2016

\(\left(x-4\right)^2+\left(x+5\right)^2\)

Nếu đa thức trên có nghiệm là n

\(\Leftrightarrow\left(n-4\right)^2+\left(n+5\right)^2=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}\left(n-4\right)^2=0\\\left(n+5\right)^2=0\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}n-4=0\\n+5=0\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}n=4\\n=-5\end{array}\right.\) vô lí 

Vậy đa thức trên không có nghiệm

3 tháng 8 2016

bạn ở dưới phải ghi ngoặc nhọn chứ

30 tháng 6 2021

\(a.\)

\(f\left(x\right)=0\)

\(\Leftrightarrow2x-4=0\)

\(\Leftrightarrow x=2\)

\(b.\)

\(g\left(x\right)=2x-4+x^2-x+6\)

\(g\left(x\right)=x^2+x+2=\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)

PTVN 

3 tháng 4 2018

không thể chứng minh, nếu x-1 thì có thể làm ra 3 trường hợp

NV
25 tháng 2 2021

Với \(c=0\Rightarrow f\left(x\right)=0\) có nghiệm \(x=0\) (loại)

TH1: \(a;c\) trái dấu 

Xét pt \(f\left(x\right)=0\Leftrightarrow a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c=0\)

Đặt \(ax^2+bx+c=t\) \(\Rightarrow at^2+bt+c=0\) (1)

Do a; c trái dấu \(\Leftrightarrow\) (1) luôn có 2 nghiệm trái dấu.

Không mất tính tổng quát, giả sử \(t_1< 0< t_2\)

\(\Rightarrow\left[{}\begin{matrix}ax^2+bx+c=t_1\\ax^2+bx+c=t_2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}ax^2+bx+c-t_1=0\left(2\right)\\ax^2+bx+c-t_2=0\left(3\right)\end{matrix}\right.\)

Mà a; c trái dấu nên:

- Nếu \(a>0\Rightarrow c< 0\Rightarrow c-t_2< 0\Rightarrow a\left(c-t_2\right)< 0\)

\(\Rightarrow\) (3) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)

- Nếu \(a< 0\Rightarrow c>0\Rightarrow c-t_1>0\Rightarrow a\left(c-t_1\right)< 0\)

\(\Rightarrow\left(2\right)\) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)

Vậy đa thức \(f\left(x\right)\) luôn có nghiệm khi a; c trái dấu

\(\Rightarrow\)Để \(f\left(x\right)=0\) vô nghiệm thì điều kiện cần là \(a;c\) cùng dấu \(\Leftrightarrow ac>0\)

Khi đó xét \(g\left(x\right)=0\) có \(a.\left(-c\right)< 0\Rightarrow g\left(x\right)=0\) luôn có 2 nghiệm trái dấu (đpcm)

Khi x=-3 thì ta sẽ có:

(9-9)*P(-3)=(-6-2)*P(-3+1)

=>-8*P(-2)=0*P(-3)=0

=>x=-2 là nghiệm của P(x)

Khi x=3 thì ta sẽ có;
(9-9)*P(3)=(2*3-2)*P(3+1)

=>4P(4)=0

=>P(4)=0

=>x=4 là nghiệm của P(x)

Khi x=1 thì ta sẽ có:

(2-2)*P(2)=(1-9)*P(1)

=>-8*P(1)=0

=>P(1)=0

=>x=1 là nghiệm của P(x)

=>ĐPCM