K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2018

Cu ghi đề như cc

Bài 2: 

a: Ta có: ΔAEH vuông tại E

mà EI là đường trung tuyến

nên IE=AH/2(1)

Ta có: ΔADH vuông tại D

mà DI là đường trung tuyến

nên DI=AH/2(2)

Từ (1) và (2) suy ra IE=ID

b: Xét tứ giác BEDC có 

\(\widehat{BEC}=\widehat{BDC}=90^0\)

Do đó: BEDC là tứ giác nội tiếp đường tròn đường kính BC

=>ME=MD

hay M nằm trên đường trung trực của ED(1)

Ta có: IE=ID

nên I nằm trên đường trung trực của ED(2)

Từ (1) và (2) suy ra IM là đường trung trực của ED

hay D đối xứng với E qua IM

Cho tam giác ABC, các đường trung tuyến BD, CE.1)    Giả sử BC = 10 cm. Tính độ dài DE.2)    Gọi I là trung điểm của BD. Từ I kẻ đường thẳng song song với BC cắt AB, CE và AC lần lượt tại M, K, N.a.     Chứng minh rằng: M là trung điểm của BE.b.    Chứng minh MK là đường Trung bình của tam giác EBC.c.     Chứng minh   d.    Chứng minh: MI = IK = KN.Cho tam giác ABC, các đường trung tuyến BD, CE.1)    Giả sử BC = 10 cm. Tính...
Đọc tiếp

Cho tam giác ABC, các đường trung tuyến BD, CE.

1)    Giả sử BC = 10 cm. Tính độ dài DE.

2)    Gọi I là trung điểm của BD. Từ I kẻ đường thẳng song song với BC cắt AB, CE và AC lần lượt tại M, K, N.

a.     Chứng minh rằng: M là trung điểm của BE.

b.    Chứng minh MK là đường Trung bình của tam giác EBC.

c.     Chứng minh   

d.    Chứng minh: MI = IK = KN.

Cho tam giác ABC, các đường trung tuyến BD, CE.

1)    Giả sử BC = 10 cm. Tính độ dài DE.

2)    Gọi I là trung điểm của BD. Từ I kẻ đường thẳng song song với BC cắt AB, CE và AC lần lượt tại M, K, N.

a.     Chứng minh rằng: M là trung điểm của BE.

b.    Chứng minh MK là đường Trung bình của tam giác EBC.

c.     Chứng minh   

d.    Chứng minh: MI = IK = KN.

 

Giúp e vs ạ

1
16 tháng 8 2021

1) 

Ta có : BD là đg trung tuyến của tam giác ABC (gt)

            => D là tđ của AC (1)

CE là đg trung tuyến của tam giác ABC (gt)

             =>E là tđ của AB (2)

Từ (1),(2)

=>DE là đg trung bình của tam giác ABC

=>DE // BC : DE=1/2 BC

Thay BC=10cm

=>DE=5cm

2)

a)                    Ta có:MN // BC (gt)

                              =>MI // BC

                       Lại có:ED // BC (cmt)

                             =>MI // BC

               Xét tam giác BED,có:

                        MI // BC

                        I là tđ của BD  (gt)

                      => MI là đg trung bình của tam giác BED

                      =>M là tđ của BE

b)  Ta có:  MN // BC  (gt)

               =>MK // BC

        Xét tam giác BEC,có:

            MK // BC (cmt)

           M là tđ của BE  (cmt)

        => MK là đg trung bình của tam giác BEC

c) ko đề

d)   MK là đg trung bình của tam giác BEC (cmt)

          =>MK=1/2 BC

          =>MI + IK =1/2 BC

       Thay MI =1/2 DE  (MI là đg trung bình của tam giác BED)

         =>1/2 DE + IK = 1/2 BC

            => IK =1/2 (BC-DE)

             =>IK=1/2 DE  (vì DE =1/2 BC)

         Có: MI =1/2 DE (cmt)

               KN =1/2 DE (cmt)

        =>MI=KN=IK   (=1/2 DE)

 

a: Xét ΔBAC có \(BC^2=AB^2+AC^2\)

nên ΔBAC vuông tại A

Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

Suy ra: BA=BE và DA=DE

Suy ra: BD là đường trung trực của AE

b: Sửa đề: DE cắt BA tại I

 Xét ΔBIC có 

IE là đường cao

CA là đường cao

IE cắt CA tại D

DO đó: D là trực tâm của ΔIBC

17 tháng 2 2020

Tham khảo hình:

a) Phải là \(MC=NB\) mới đúng nhé.

+ Vì \(M\) là trung điểm của \(AC\left(gt\right)\)

b) Đề sai rồi bạn, hay là nhầm sang đề khác rồi.

Chúc bạn học tốt!

17 tháng 2 2020

ko, trog đề là như vậy nhưng chắc giáo viên cho sai , cảm ơn bạn đã nhắc mik!

Xét tứ giác ADBC có

M la trung điểm chung của AB và DC

nên ADBC là hình bình hành

=>góc ADB=góc ACB

Xét ΔABC có

MN//BC

AM/AB=1/2

=>N là trung điểm của AC

Xét ΔNBC và ΔNEA có

góc NCB=góc NAE

NC=NA

góc BNC=góc ENA

=>ΔNBC=ΔNEA

=>NB=NE

=>AECB là hình bình hành

=>CE=AB=AC=BD và góc AEC=góc ABC

=>góc AEC=góc ADB

Gọi giao của BD và CE là K

Xét ΔKDE có góc KDE=góc KED

nên ΔKDE cân tại K

=>KD=KE

=>KB=KC

=>K nằm trên trung trực của BC

mà AH là trung trực của BC

nên A,H,K thẳng hàng

a: Xét ΔOAD và ΔOMK có

\(\widehat{OAD}=\widehat{OMK}\)(hai góc so le trong, AD//MK)

\(\widehat{AOD}=\widehat{MOK}\)

Do đó: ΔOAD đồng dạng với ΔOMK

=>\(\dfrac{OA}{OM}=\dfrac{OD}{OK}\)

=>\(OA\cdot OK=OM\cdot OD\)

b: Xét ΔABC có AD là phân giác

nên \(\dfrac{BD}{AB}=\dfrac{CD}{CA}\)

=>\(\dfrac{BD}{5}=\dfrac{CD}{10}\)

=>\(\dfrac{BD}{1}=\dfrac{CD}{2}\)

mà BD+CD=BC=12

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{1}=\dfrac{CD}{2}=\dfrac{BD+CD}{1+2}=\dfrac{12}{3}=4\)

=>\(BD=4\left(cm\right);CD=8\left(cm\right)\)

c: ME//AD

=>\(\widehat{AEK}=\widehat{DAC}\)(hai góc so le trong)(1)

KM//AD

=>\(\widehat{AKE}=\widehat{BAD}\)(hai góc đồng vị)(2)

AD là phân giác của góc BAC

=>\(\widehat{BAD}=\widehat{CAD}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\widehat{AEK}=\widehat{AKE}\)

=>AE=AK

Xét ΔCAD có EM//AD

nên \(\dfrac{CE}{CA}=\dfrac{CM}{CD}\)

=>\(\dfrac{CE}{CM}=\dfrac{CA}{CD}\)

mà \(\dfrac{CA}{CD}=\dfrac{BA}{BD}\)

nên \(\dfrac{CE}{CM}=\dfrac{BA}{BD}\)

=>\(\dfrac{AB}{BD}=\dfrac{EC}{CM}\)

=>\(\dfrac{AB}{EC}=\dfrac{BD}{CM}\)(ĐPCM)