BT: Cho ΔABC. Vẽ BD ⊥ AC,
CE ⊥ AB. Gọi M là trung điểm của BC.
C/m điểm M ∈ đường thẳng trung trực của DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Ta có: ΔAEH vuông tại E
mà EI là đường trung tuyến
nên IE=AH/2(1)
Ta có: ΔADH vuông tại D
mà DI là đường trung tuyến
nên DI=AH/2(2)
Từ (1) và (2) suy ra IE=ID
b: Xét tứ giác BEDC có
\(\widehat{BEC}=\widehat{BDC}=90^0\)
Do đó: BEDC là tứ giác nội tiếp đường tròn đường kính BC
=>ME=MD
hay M nằm trên đường trung trực của ED(1)
Ta có: IE=ID
nên I nằm trên đường trung trực của ED(2)
Từ (1) và (2) suy ra IM là đường trung trực của ED
hay D đối xứng với E qua IM
1)
Ta có : BD là đg trung tuyến của tam giác ABC (gt)
=> D là tđ của AC (1)
CE là đg trung tuyến của tam giác ABC (gt)
=>E là tđ của AB (2)
Từ (1),(2)
=>DE là đg trung bình của tam giác ABC
=>DE // BC : DE=1/2 BC
Thay BC=10cm
=>DE=5cm
2)
a) Ta có:MN // BC (gt)
=>MI // BC
Lại có:ED // BC (cmt)
=>MI // BC
Xét tam giác BED,có:
MI // BC
I là tđ của BD (gt)
=> MI là đg trung bình của tam giác BED
=>M là tđ của BE
b) Ta có: MN // BC (gt)
=>MK // BC
Xét tam giác BEC,có:
MK // BC (cmt)
M là tđ của BE (cmt)
=> MK là đg trung bình của tam giác BEC
c) ko đề
d) MK là đg trung bình của tam giác BEC (cmt)
=>MK=1/2 BC
=>MI + IK =1/2 BC
Thay MI =1/2 DE (MI là đg trung bình của tam giác BED)
=>1/2 DE + IK = 1/2 BC
=> IK =1/2 (BC-DE)
=>IK=1/2 DE (vì DE =1/2 BC)
Có: MI =1/2 DE (cmt)
KN =1/2 DE (cmt)
=>MI=KN=IK (=1/2 DE)
a: Xét ΔBAC có \(BC^2=AB^2+AC^2\)
nên ΔBAC vuông tại A
Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
Suy ra: BA=BE và DA=DE
Suy ra: BD là đường trung trực của AE
b: Sửa đề: DE cắt BA tại I
Xét ΔBIC có
IE là đường cao
CA là đường cao
IE cắt CA tại D
DO đó: D là trực tâm của ΔIBC
Tham khảo hình:
a) Phải là \(MC=NB\) mới đúng nhé.
+ Vì \(M\) là trung điểm của \(AC\left(gt\right)\)
b) Đề sai rồi bạn, hay là nhầm sang đề khác rồi.
Chúc bạn học tốt!
ko, trog đề là như vậy nhưng chắc giáo viên cho sai , cảm ơn bạn đã nhắc mik!
Xét tứ giác ADBC có
M la trung điểm chung của AB và DC
nên ADBC là hình bình hành
=>góc ADB=góc ACB
Xét ΔABC có
MN//BC
AM/AB=1/2
=>N là trung điểm của AC
Xét ΔNBC và ΔNEA có
góc NCB=góc NAE
NC=NA
góc BNC=góc ENA
=>ΔNBC=ΔNEA
=>NB=NE
=>AECB là hình bình hành
=>CE=AB=AC=BD và góc AEC=góc ABC
=>góc AEC=góc ADB
Gọi giao của BD và CE là K
Xét ΔKDE có góc KDE=góc KED
nên ΔKDE cân tại K
=>KD=KE
=>KB=KC
=>K nằm trên trung trực của BC
mà AH là trung trực của BC
nên A,H,K thẳng hàng
a: Xét ΔOAD và ΔOMK có
\(\widehat{OAD}=\widehat{OMK}\)(hai góc so le trong, AD//MK)
\(\widehat{AOD}=\widehat{MOK}\)
Do đó: ΔOAD đồng dạng với ΔOMK
=>\(\dfrac{OA}{OM}=\dfrac{OD}{OK}\)
=>\(OA\cdot OK=OM\cdot OD\)
b: Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{AB}=\dfrac{CD}{CA}\)
=>\(\dfrac{BD}{5}=\dfrac{CD}{10}\)
=>\(\dfrac{BD}{1}=\dfrac{CD}{2}\)
mà BD+CD=BC=12
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{1}=\dfrac{CD}{2}=\dfrac{BD+CD}{1+2}=\dfrac{12}{3}=4\)
=>\(BD=4\left(cm\right);CD=8\left(cm\right)\)
c: ME//AD
=>\(\widehat{AEK}=\widehat{DAC}\)(hai góc so le trong)(1)
KM//AD
=>\(\widehat{AKE}=\widehat{BAD}\)(hai góc đồng vị)(2)
AD là phân giác của góc BAC
=>\(\widehat{BAD}=\widehat{CAD}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\widehat{AEK}=\widehat{AKE}\)
=>AE=AK
Xét ΔCAD có EM//AD
nên \(\dfrac{CE}{CA}=\dfrac{CM}{CD}\)
=>\(\dfrac{CE}{CM}=\dfrac{CA}{CD}\)
mà \(\dfrac{CA}{CD}=\dfrac{BA}{BD}\)
nên \(\dfrac{CE}{CM}=\dfrac{BA}{BD}\)
=>\(\dfrac{AB}{BD}=\dfrac{EC}{CM}\)
=>\(\dfrac{AB}{EC}=\dfrac{BD}{CM}\)(ĐPCM)