Cho biểu thức
\(M=x^3+y^3-xy\)
Với x;y \(\in\)\(ℝ\)và x+y = --1
tìm các giá trị của x và y để M có giá trị lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(M=2x^3+xy^2-3xy+1\)
b, Thay x = -1 ; y = 2 ta được
M = -2 - 2 + 6 + 1 = 3
\(\frac{x^3-x^2y-xy^2+y^3}{x^3+x^2y-xy^2-y^3}=\frac{\left(x^3-xy^2\right)-\left(x^2.y-y^3\right)}{\left(x^3-xy^2\right)+\left(x^2y-y^3\right)}=\frac{x.\left(x^2-y^2\right)-y.\left(x^2-y^2\right)}{x.\left(x^2-y^2\right)+y.\left(x^2-y^2\right)}=\frac{\left(x-y\right)\left(x^2-y^2\right)}{\left(x+y\right)\left(x^2-y^2\right)}=\frac{x-y}{x+y}\)
Ta có M = (x3 + x2y +x2 ) + ( x2y + xy2 + xy )+ (x+y+1) +2017
= x2 ( x+y+1) + xy (x+y+1) + 1 (x+y+1) +2017
= (x+y+1)(x2 +xy+1 ) + 2017
= 0 + 2017
=2017
a) Ta có: \(A=\dfrac{x-\sqrt{xy}+y}{x\sqrt{x}+y\sqrt{y}}+\dfrac{x+\sqrt{xy}+y}{x\sqrt{x}-y\sqrt{y}}\)
\(=\dfrac{x-\sqrt{xy}+y}{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}+\dfrac{x+\sqrt{xy}+y}{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}\)
\(=\dfrac{1}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{\sqrt{x}-\sqrt{y}}\)
\(=\dfrac{\sqrt{x}-\sqrt{y}+\sqrt{x}+\sqrt{y}}{x-y}\)
\(=\dfrac{2\sqrt{x}}{x-y}\)
Ta có:\(M=x^3+y^3-xy=\left(x+y\right)\left(x^2-xy+y^2\right)-xy=-x^2+xy-y^2-xy=-\left(x^2+y^2\right)\)
Áp dụng BĐT Bun-hia-cop-xki ta có:
\(\left(x^2+y^2\right)\left(1+1\right)\ge\left(x+y\right)^2\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
\(\Leftrightarrow-\left(x^2+y^2\right)\le-\frac{1}{2}\)
Dấu '=' xảy ra khi \(\hept{\begin{cases}x=y\\x+y=-1\end{cases}\Leftrightarrow x=y=-\frac{1}{2}}\)
Vậy \(M_{max}=-\frac{1}{2}\)khi \(x=y=-\frac{1}{2}\)