cho x,y ko âm thỏa mãn x^3+y^3=2
CMR x^2+y^2 < hoặc=2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Quy luật cứ mũ chẵn 2 số tận cùng là 01 còn mũ lẻ thì 2 số tận cùng là 51
Vậy 2 số tận cùng của 51^51 là 51
2)pt<=> x-2=0 hoặc (x-2)^2=1 <=> x=2 hoặc x=1 hoặc x=3
Vậy trung bìng cộng là 2
4)Pt<=> (x-7)^(x+1)=0 hoặc 1-(x-7)^10=0=> x=7 hoặc x=8 hoặc x=6
Do x là số nguyên tố => x=7 TM
5)3y=2z=> 2z-3y=0
4x-3y+2z=36=> 4x=36=> x=9
=> y=2.9=18=> z=3.18/2=27
=> x+y+z=9+18+27=54
6)pt<=> x^2=0 hoặc x^2=25 <=> x=0 hoặc x=-5 hoặc x=5
7)pt<=> (3x+2)(5x+1)=(3x-1)(5x+7)
Nhân ra kết quả cuối cùng là x=3
8)ta có (3x-2)^5=-243=-3^5
=> 3x-2=-3 => x=-1/3
9)Câu này chưa rõ ý bạn muốn hỏi!
10)2x-3=4 hoặc 2x-3=-4
<=> x=7/2 hoặc x=-1/2
11)x^4=0 hoặc x^2=9
=> x=0 hoặc x=-3 hoặc x=3
Bất đẳng thức cần chứng minh tương đương:
\(y+2\ge\left(2-x\right)\left(2-z\right)\left(2-y\right)\).
Theo bất đẳng thức AM - GM: \(\left(2-x\right)\left(2-z\right)\le\dfrac{\left(4-x-z\right)^2}{4}=\dfrac{\left(2-y\right)^2}{4}\).
Do đó ta chỉ cần chứng minh:
\(y+2\ge\dfrac{\left(2-y\right)^3}{4}\).
Mặt khác, bđt trên tương đương: \(\dfrac{y\left[\left(y-3\right)^2+7\right]}{4}\ge0\) (luôn đúng).
Do đó bđt ban đầu cũng đúng.
Đẳng thức xảy ra khi y = 0; x = z = 1.
Áp dụng BĐT Bunhiacôpxki , ta có :
\(\left(x^2+y^2\right)^2=\left(\sqrt{x}.\sqrt{x^3}+\sqrt{y}.\sqrt{y^3}\right)^2\) \(\le\left(x+y\right)\left(x^3+y^3\right)=2\left(x+y\right)\)
\(\Leftrightarrow\left(x^2+y^2\right)^4\le4\left(x+y\right)^2=4\left(1.x+1.y\right)^2\le4\left(1+1\right)\left(x^2+y^2\right)=8\left(x^2+y^2\right)\)
\(\Leftrightarrow\left(x^2+y^2\right)^3\le8\)
\(\Leftrightarrow x^2+y^2\le2\left(\text{đ}pcm\right)\)
Dấu "=" xảy ra khi x = y = 1