giải hệ phương trình:
\(\hept{\begin{cases}\left(x-1\right)^2-2y=2\\3\left(x-1\right)^2+3y=1\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: ĐK: x khác -1/2, y khác -2
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:
\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)
=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)
Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>
\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)
\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)
\(\Leftrightarrow a^2+1=2a\)
\(\Leftrightarrow\left(a-1\right)^2=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)
Những bài còn lại chỉ cần phân tích ra rồi rút gọn là được nha. Bạn tự làm nha!
Đặt \(\hept{\begin{cases}x+y=a\\x-y=b\end{cases}}\)\(\Rightarrow\)ta có hệ \(\hept{\begin{cases}2a+3b=4\\a+2b=5\end{cases}}\Rightarrow\hept{\begin{cases}a=-7\\b=6\end{cases}}\)Từ đó ta có \(\hept{\begin{cases}x+y=-7\\x-y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{13}{2}\end{cases}}\)PS: Cái đề chỗ 3(x+y) phải thành 3(x-y) chứ
ĐK: \(x^2+2y+1\ge0\)
Phương trình (1) tương đương:
\(4y^2-4y\sqrt{x^2+2y+1}+x^2+2y+1=x^2-2xy+y^2\)
\(\Leftrightarrow\)\(\left(2y-\sqrt{x^2+2y+1}\right)^2=\left(x-y\right)^2\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt{x^2+2y+1}=3y-x\\\sqrt{x^2+2x+1}=x+y\end{cases}}\)
Trường hợp 1: \(\sqrt{x^2+2x+1}=3y-x\)Bình phương 2 vế ta được:
\(\hept{\begin{cases}3y\ge x\\x^2+2y+1=9y^2-6xy+x^2\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}3y\ge x\\6xy=9y^2-2y-1\\xy=y^2+3y-3\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1;y=1\\x=\frac{415}{51};y=\frac{17}{3}\end{cases}}\)(t/m)
Trường hợp 2: \(\sqrt{x^2+2y+1}=x+y\)Bình phương 2 vế ta được:
\(\hept{\begin{cases}x+y\ge0\\x^2+2y+1=x^2+2xy+y^2\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x+y\ge0\\2xy=-y^2+2y+1\\xy=y^2+3y-3\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1;y=1\left(t/m\right)\\x=\frac{41}{21};y=-\frac{7}{3}\left(L\right)\end{cases}}\)
Vậy hệ có nghiệm \(\left(x;y\right)=\left(1;1\right);\left(\frac{415}{51};\frac{17}{3}\right)\)
\(\frac{2x+3}{3y-2}=1\Rightarrow2x+3=3y-2\Rightarrow2x-3y=-5\)\(\left(1\right)\)
\(3\left(3y+2\right)-4\left(x-2y\right)=0\)
\(\Rightarrow9y+6-4x+2y=0\)
\(\Rightarrow5x+2y=-6\)\(\left(2\right)\)
Từ ( 1 ) và ( 2 ) ta có :
\(\hept{\begin{cases}2x-3y=-5\\5x+2y=-6\end{cases}\Rightarrow\hept{\begin{cases}10x-15y=-25\\10x+4y=-12\end{cases}}}\)
Trừ xuống ta có : \(-19y=13\Rightarrow y=-\frac{13}{19}\)
\(\Rightarrow x=...\)
Em không chắc nha,em mới lớp 7 thôi!
Từ pt đầu suy ra \(\left(x-1\right)^2=2y+2\)
Thay ngược vào phương trình dưới suy ra \(3\left(2y+2\right)+3y=1\Leftrightarrow9y+6=1\Rightarrow y=-\frac{5}{9}\)
Suy ra \(\left(x-1\right)^2=2.\left(-\frac{5}{9}\right)+2=\frac{8}{9}\)
Suy ra \(\orbr{\begin{cases}x=\frac{\sqrt{8}}{3}+1\\x=1-\frac{\sqrt{8}}{3}\end{cases}}\)
Vậy ...
\(\hept{\begin{cases}\left(x-1\right)^2-2y=2\\3.\left(x-1\right)^2+3y=1\end{cases}\Leftrightarrow\hept{\begin{cases}3.\left(x-1\right)^2-6y-5=1\\3.\left(x-1\right)^2+3y=1\end{cases}\Leftrightarrow}-6y-5=3y}\)
\(\Leftrightarrow-9y=5\Leftrightarrow y=-\frac{5}{9}\)tự tìm x ha :))