Cho 2 da thuc A= 2x^3 + x^2 - 4x +x^3 + 3 ; B= 6x + 3x^3 -2x + x^2 - 5
a, Tinh tong hai da thuc A+B
b, Tinh hieu hai da thuc A-B
c, tim nghiem cua da thuc hieu A - B vua tim duoc o y b.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(f\left(x\right)+g\left(x\right)=\left(-x^3+3x^2+4x\right)+\left(2x^3-8x^2-2x\right)\\
=-x^3+3x^2+4x+2x^3-8x^2-2x\\
=\left(-x^3+2x^3\right)+\left(3x^2-8x^2\right)+\left(4x-2x\right)\\
=x^3+\left(-5x^2\right)+2x\\
=x^3-5x^2+2x\)
Để \(f\left(x\right)+g\left(x\right)=0\) thì:
\(x^3-5x^2+2x=0\\
\Leftrightarrow x\left(x^2-5x+2\right)=0\)
\(\Leftrightarrow...\)
a)\(f\left(x\right)=x^5-3x^2+7x^4-x^5+2x^2-9x^3+x^2-\frac{1}{4}x+2x-3\)
\(=x^5-x^5+7x^4-9x^3-3x^2+2x^2+x^2-\frac{1}{4}x+2x-3\)
\(=7x^4-9x^3+\frac{7}{4}x-3\)
\(g\left(x\right)=5x^4-x^5+\frac{1}{2}x^2+x^5+x^2-4x^4-2x^3+3x^2+x^3-\frac{1}{4}\)
\(=-x^5+x^5+5x^4-4x^4-2x^3+x^3+\frac{1}{2}x^2+x^2+3x^2-\frac{1}{4}\)
\(=x^4-x^3+\frac{9}{2}x^2-\frac{1}{4}\)
b)\(f\left(1\right)=7.1^4-9.1^3+\frac{7}{4}.1-3=7-9+\frac{7}{4}-3=-\frac{13}{4}\)
\(f\left(-1\right)=7.\left(-1\right)^4-9.\left(-1\right)^3+\frac{7}{4}.\left(-1\right)-3=7+9-\frac{7}{4}-3=\frac{45}{4}\)
\(g\left(1\right)=1^4-1^3+\frac{9}{2}.1^2-\frac{1}{4}=1-1+\frac{9}{2}-\frac{1}{4}=\frac{17}{4}\)
\(g\left(-1\right)=\left(-1\right)^4-\left(-1\right)^3+\frac{9}{2}.\left(-1\right)^2-\frac{1}{4}=1+1+\frac{9}{2}-\frac{1}{4}=\frac{25}{4}\)
c) Ta có: f(x)+g(x)=\(7x^4-9x^3+\frac{7}{4}x-3+x^4-x^3+\frac{9}{2}x^2-\frac{1}{4}=7x^4+x^4-9x^3-x^3+\frac{9}{2}x^2+\frac{7}{4}x-3-\frac{1}{4}\)
\(=8x^4-10x^3+\frac{9}{2}x^2+\frac{7}{4}x-\frac{13}{4}\)
f(x)-g(x) =\(7x^4-9x^3+\frac{7}{4}x-3-x^4+x^3-\frac{9}{2}x^2+\frac{1}{4}=7x^4-x^4-9x^3+x^3-\frac{9}{2}x^2+\frac{7}{4}x-3+\frac{1}{4}\)
\(=6x^4-8x^3-\frac{9}{2}x^2+\frac{7}{4}x-\frac{11}{4}\)
\(A=x^4+6x^2+8x^3-2x-3\)
\(B=3x^2+x^4+4x^3-3x+5\)\(\Rightarrow2B=6x^2+2x^4+8x^3-6x+10\)
\(\Rightarrow A-2B=x^4+6x^2+8x^3-2x-3\)\(-6x^2-2x^4-8x^3+6x-10\)
\(=-x^4+4x-13\)
Ta có
\(A=x^4+8x^3+6x^2-2x-3\)
\(B=x^4+4x^3+3x^2-3x+5\Rightarrow2B=2x^4+8x^3+6x^2-6x+10\)
\(A-2B=x^4+8x^3+6x^2-2x-3\)\(-2x^4-8x^3-6x^2+6x-10\)
\(A-2B=-x^4+4x-13\)
nghiem chung cua hai da thuc la 1
minh doan day, sai thi thoi
a) \(A+B=2x^3+x^2-4x+x^3+3+6x+3x^3-2x+x^2-5\)
\(=6x^3+2x^2-2\)
b) \(A-B=\left(2x^3+x^2-4x+x^3+3\right)-\left(6x+3x^3-2x+x^2-5\right)\)
\(=-8x+8\)
c) Đặt \(f\left(x\right)=-8x+8\)
Ta có: \(f\left(x\right)=0\Leftrightarrow-8x+8=0\)
\(\Leftrightarrow-8x=-8\)
\(\Leftrightarrow x=1\)
Vậy \(x=1\)là nghiệm của đa thức f(x).