K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 4 2019

\(P=\frac{1}{\left(x-2\right)^2}+\frac{1}{\left(3-x\right)^2}+\frac{1}{\left(x-2\right)\left(3-x\right)}\)

\(P\ge\frac{2}{\left(x-2\right)\left(3-x\right)}+\frac{1}{\left(x-2\right)\left(3-x\right)}=\frac{3}{\left(x-2\right)\left(3-x\right)}\)

\(P\ge\frac{3}{\frac{\left(x-2+3-x\right)^2}{4}}=12\)

\(\Rightarrow P_{min}=12\) khi \(x-2=3-x\Rightarrow x=\frac{5}{2}\)

20 tháng 4 2019

\(\frac{1}{\left(x-2\right)^2}+\frac{1}{\left(x-3\right)^2}\ge\frac{2}{\left(x-2\right)\left(x-3\right)}\)

Bất đẳng thức nào vậy bạn ??

2 tháng 8 2015

A = 2 + 22 + 23 + 24 +...+260

   - A tất nhiên chia hết cho 2 

A = 2 + 22 + 23 + 24 +....+ 260

ta có: (2 + 22) + ( 23 + 24) +....+ (259 + 260)

      chc 3        +    chc 3   + ....+   chc 3

=> A chia hết cho 3

A = 2 + 2+ 23 + 24 + .... + 260

ta có: (2 + 22 + 23) + (24+25+26) +.....+(258 + 259 + 260)

           chc 7          +  chc 7       +.... +    chc 7

=> A chia hết cho 7

A = 2 + 22 + 23 + 24 +....+260

ta có: (2 + 22 + 23) + (24 + 25 + 26)+....+(258 + 259 + 260)

              chc 14     +    chc 14       +.....+   chc 14

=> A chia hết cho 14

25 tháng 11 2018

chc là gì vậy bạn Đỗ Thi Ngọc Khánh

3 tháng 9 2023

1) \(2⋮x\Rightarrow x\in U\left(2\right)=\left\{1;2\right\}\left(x\inℕ\right)\)

2) \(2⋮\left(x+1\right)\Rightarrow x+1\in U\left(2\right)=\left\{1;2\right\}\Rightarrow x\in\left\{0;1\right\}\left(x\inℕ\right)\)

3) \(2⋮\left(x+2\right)\Rightarrow x+2\in U\left(2\right)=\left\{1;2\right\}\Rightarrow x\in\left\{-1;0\right\}\Rightarrow x\in\left\{0\right\}\left(x\inℕ\right)\)

4) \(2⋮\left(x-1\right)\Rightarrow x-1\in U\left(2\right)=\left\{1;2\right\}\Rightarrow x\in\left\{2;3\right\}\left(x\inℕ\right)\)

3 tháng 9 2023

1.     2 chia hết cho x

Ta có 2 là số chẵn, nên x phải là số chẵn. Vậy các số tự nhiên x thỏa mãn là x = 2, 4, 6, …

2.     2 chia hết cho (x + 1)

Ta có 2 chia hết cho (x + 1) khi và chỉ khi x + 1 là số chẵn. Điều này tương đương với x là số lẻ. Vậy các số tự nhiên x thỏa mãn là x = 1, 3, 5, …

3.     2 chia hết cho (x + 2)

Ta có 2 chia hết cho (x + 2) khi và chỉ khi x + 2 là số chẵn. Điều này tương đương với x là số chẵn. Vậy các số tự nhiên x thỏa mãn là x = 0, 2, 4, …

4.     2 chia hết cho (x - 1)

Ta có 2 chia hết cho (x - 1) khi và chỉ khi x - 1 là số chẵn. Điều này tương đương với x là số lẻ. Vậy các số tự nhiên x thỏa mãn là x = 3, 5, 7, …

 

29 tháng 4 2019

1. Cho số nguyên x là 9 (Thỏa mãn x:7, dư 2); 2x+3(giả thuyết)

=> (2.9)+3 = 21 chia hết cho7 (chia hết cho viết bằng ki hiệu nha bạn)

2. 2^0+2^1+2^2+2^3+...+2^5n-3+2^5n-2+2^5-1

= (2^0+2^1+2^2+2^3+2^4)+...+(2^5n-5+2^5n-4+2^5n-3+2^5n-2+2^5n-1)

=(1+2+4+8+16)+...+(2^5n-5+2^5n-4+2^5n-3+2^5n-2+2^5n-1) chia hết cho 31

AH
Akai Haruma
Giáo viên
5 tháng 2

Bài 1:
$A=2^1+2^2+2^3+2^4$

$2A=2^2+2^3+2^4+2^5$

$\Rightarrow 2A-A=2^5-2^1$

$\Rightarrow A=2^5-1=32-1=31$

----------------------------

$B=3^1+3^2+3^3+3^4$

$3B=3^2+3^3+3^4+3^5$

$\Rightarrow 3B-B = 3^5-3$

$\Rightarrow 2B = 3^5-3\Rightarrow B = \frac{3^5-3}{2}$

--------------------------

$C=5^1+5^2+5^3+5^4$

$5C=5^2+5^3+5^4+5^5$

$\Rightarrow 5C-C=5^5-5$

$\Rightarrow C=\frac{5^5-5}{4}$

AH
Akai Haruma
Giáo viên
5 tháng 2

Bài 2: Sai đề bạn nhé. Bạn xem lại.

9 tháng 10 2017

a) \(\left(1+2+2^2+...+2^7\right)\)

\(=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^6+2^7\right)\)

\(=\left(1+2\right)+2^2.\left(1+2\right)+...+2^6.\left(1+2\right)\)

\(=3+2^2.3+...+2^6.3\)

\(=3.\left(1+2^2+...+2^6\right)⋮3\left(đpcm\right)\)

9 tháng 10 2017

a) Đặt A = 1 + 2 + 22 + 23 + ... + 27

Ta có:

A = 1 + 2 + 22 + 23 + ... + 27

\(\Rightarrow\)2A = 2 + 22 + 23 + 24 + ... + 28

\(\Rightarrow\)A = 28 - 1 = 255

Vì 255\(⋮\)3\(\Rightarrow\)2 + 22 + 23 + 24 + ... + 28\(⋮\)3

\(\Rightarrow\)ĐPCM

18 tháng 11 2018


 

\(A=\left(2+2^2\right)+...+\left(2^{99}+2^{100}\right)\)

\(A=2\cdot\left(1+2\right)+...+2^{99}\cdot\left(1+2\right)\)

\(A=2\cdot3+...+2^{99}\cdot3\)

\(A=3\cdot\left(2+...+2^{99}\right)⋮3\left(đpcm\right)\)

2 ý kia tương tự

18 tháng 11 2018

Giải:

Đặt S=(2+2^2+2^3+...+2^100)

=2.(1+2+2^2+2^3+2^4)+2^6.(1+2+2^2+2^3+2^4)+...+(1+2+2^2+2^3+2^4).296

=2.31+26.31+...+296.31

=31.(2+26+...+296)\(⋮\)31

13 tháng 10 2023

a) \(A=2\left(1+2+2^2+...+2^{59}\right)⋮2\)

b) \(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{59}\right)⋮3\)

c) \(A=2\left(1+2+2^2\right)+2^5\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\left(2+2^5+...+2^{58}\right)⋮7\)

13 tháng 10 2023

a) A = 2 + 2² + 2³ + ... + 2⁵⁹ + 2⁶⁰

= 2.(1 + 2 + 2² + ... + 2⁵⁸ + 2⁵⁹) 2

Vậy A ⋮ 2

b) A = 2 + 2² + 2³ + ... + 2⁵⁹ + 2⁶⁰

= (2 + 2²) + (2³ + 2⁴) + ... + (2⁵⁹ + 2⁶⁰)

= 2.(1 + 2) + 2³.(1 + 2) + ... + 2⁵⁹.(1 + 2)

= 2.3 + 2³.3 + ... + 2⁵⁹.3

= 3.(2 + 2³ + ... + 2⁵⁹) ⋮ 3

Vậy A ⋮ 3

c) A = 2 + 2² + 2³ + 2⁴ + 2⁵ + 2⁶ + ... + 2⁵⁸ + 2⁵⁹ + 2⁶⁰

= (2 + 2² + 2³) + (2⁴ + 2⁵ + 2⁶) + ... + (2⁵⁸ + 2⁵⁹ + 2⁶⁰)

= 2.(1 + 2 + 2²) + 2⁴.(1 + 2 + 2²) + ... + 2⁵⁸.(1 + 2 + 2²)

= 2.7 + 2⁴.7 + ... + 2⁵⁸.7

= 7.(2 + 2⁴ + ... + 2⁵⁸) ⋮ 7

Vậy A ⋮ 7

7 tháng 10 2023

d