Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét ΔHBA và ΔABC có :
\(\widehat{H}=\widehat{A}=90^0\)
\(\widehat{B}:chung\)
\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g-g\right)\)
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{AH}{AC}\)
\(\Rightarrow AB.AC=BC.AH\)
b, Xét ΔABC vuông A, theo định lý Pi-ta-go ta được :
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20\left(cm\right)\)
Ta có : \(\Delta HBA\sim\Delta ABC\left(cmt\right)\)
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{AH}{AC}\)
hay \(\dfrac{12}{20}=\dfrac{AH}{16}\)
\(\Rightarrow AH=\dfrac{12.16}{20}=9,6\left(cm\right)\)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Ta có: ΔHAC\(\sim\)ΔABC(cmt)
nên \(\dfrac{AH}{AB}=\dfrac{AC}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow\dfrac{AH}{6}=\dfrac{8}{10}=\dfrac{4}{5}\)
hay AH=4,8(cm)
Vậy: AH=4,8cm
a) Xét ΔHAC vuông tại H và ΔABC vuông tại A có
\(\widehat{ACH}\) chung
Do đó: ΔHAC\(\sim\)ΔABC(g-g)
a) Xét \(\Delta ABC\) và \(\Delta HBA\) có \(\widehat{BAC}=\widehat{BHA}=90^o;\widehat{B}-\text{góc chung}\)
\(\Rightarrow \Delta ABC\sim\Delta HBA(g.g)\)
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{HB}{BA}\Rightarrow AB^2=BH.BC\)
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
Do đó: ΔABC\(\sim\)ΔHAC
b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
góc HBA=góc HAC
Do đó: ΔHBA\(\sim\)ΔHAC
Suy ra: HB/HA=HA/HC
hay \(HA^2=HB\cdot HC\)
(Hình bạn vẽ chắc xong rồi ha?)
b/ Ta có:
\(AC^2=BC.HC\left(cmt\right)\)
\(\Leftrightarrow\frac{AC}{BC}=\frac{HC}{AC}\)
\(\Leftrightarrow\frac{12}{20}=\frac{HC}{12}\Rightarrow HC=\frac{12.12}{20}=7,2\left(cm\right)\)
\(\Rightarrow BH=BC-HC=20-7,2=12,8\left(cm\right)\)
c/ Xét tam giác AHC (hoặc nếu thích bạn dùng tam giác ABH cũng được) vuông tại H có:
\(AH^2+HC^2=AC^2\left(pytago\right)\)
\(AH^2+7,2^2=12^2\)
\(AH^2=12^2-7,2^2=144-51,84-92,16\)
\(\Rightarrow AH=\sqrt{92,16}=9,6\left(cm\right)\)
Diện tích tam giác HAC là: \(\frac{1}{2}.9,6.7,2=34,56\left(cm^2\right)\)(1)
Xét tam giác ABC vuông tại A có:
\(AB^2+AC^2=BC^2\left(pytago\right)\)
\(AB^2+12^2=20^2\)
\(AB^2=20^2-12^2=400-144=256\)
\(\Rightarrow AB=\sqrt{256}=16\left(cm\right)\)
Diện tích tam giác ABC là: \(\frac{1}{2}.16.12=96\left(cm^2\right)\)(2)
Từ (1);(2) => \(\frac{S_{HAC}}{S_{ABC}}=\frac{34,56}{96}=\frac{9}{25}=0,36\)
Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
BA^2=HB*HC
=>HB(HB+10,8)=7,2^2
=>HB^2+10,8HB-7,2^2=0
=>HB=3,6cm
=>BC=14,4cm
\(AC=\sqrt{14.4^2-7.2^2}=\dfrac{36}{5}\sqrt{3}\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}\cdot\dfrac{36\sqrt{3}}{5}\cdot7.2\simeq44,89\left(cm^2\right)\)