K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2022

loading...  

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạng với ΔHAC

=>CA/CH=CB/CA

=>CA^2=CH*CB

b: BD là phân giác

=>BC/AB=DC/DA

Xét ΔHAC có DE//AH

nên EC/EH=DC/DA

=>BC/AB=EC/EH

=>AB/EH=BC/EC

c: AC=căn 20^2-12^2=16cm

DA/AB=DC/BC

=>DA/3=DC/5=(DA+DC)/(3+5)=16/8=2

=>DA=6cm; DC=10cm

S BAC=1/2*12*16=96cm2

S BAD=1/2*6*12=36cm2

=>S BDC=60cm2

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

Do đó: ΔABC\(\sim\)ΔHAC

b: Ta có: ΔABC\(\sim\)ΔHAC

nên AC/HC=BC/AC

hay \(AC^2=BC\cdot HC\)

c: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

10 tháng 5 2022

a, Xét Δ ABC và Δ HAC, có :

\(\widehat{ACB}=\widehat{HCA}\) (góc chung)

\(\widehat{BAC}=\widehat{AHC}=90^o\)

=> Δ ABC ∾ Δ HAC (g.g)

b, Ta có : Δ ABC ∾ Δ HAC (cmt)

=> \(\dfrac{AC}{HC}=\dfrac{BC}{AC}\)

=> \(AC^2=BC.HC\)

c, Xét Δ ABC, có :

\(BC^2=AB^2+AC^2\) (định lí Py - ta - go)

=> \(BC^2=3^2+4^2\)

=> \(BC^2=25\)

=> \(BC=5\left(cm\right)\)

 

17 tháng 3 2022

A B C H D E

a)Xét \(\Delta ABC\) và \(\Delta HAC\) có 

\(\widehat{C}\) chung

\(\widehat{BAC}=\widehat{AHC}\)

=> \(\Delta ABC\) \(\sim\)\(\Delta HAC\) (g-g)

b) Xét  \(\Delta ABC\) vuông tại A có : 

\(BC^2=AB^2+AC^2\)

\(BC^2=81+144\)

\(BC^2=225\)

BC=15 cm

 Xét  \(\Delta ABC\)  có : CD là tia phân  giác 

=> \(\dfrac{AD}{DB}=\dfrac{AC}{BC}=\dfrac{12}{15}=\dfrac{4}{5}\)

c) Đề bài sai nhé vì nếu \(AH^2=AH.HB\) 

                               \(\Leftrightarrow HB=HA\Rightarrow\Delta AHB\) vuông cân tại H

=> \(\widehat{ABH}=45^o\) => \(\Delta ABC\) vuông cân tại A => AB =AC  => 9=12(vô lý)

19 tháng 3 2022

à lộn HB là HC nha

a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: ΔBCA vuông tại A có AH vuông góc BC

nên AH^2=HB*CH

c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm

21 tháng 4 2018

  A B C H D E

a) Xét tam giác HBA và tam giác ABC có:

Góc B chung

\(\widehat{BHA}=\widehat{BAC}\left(=90^o\right)\)

\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g-g\right)\)

\(\Rightarrow\frac{HB}{AB}=\frac{AB}{CB}\Rightarrow AB^2=BH.BC\)

b) Áp dụng định lý Pi-ta-go cho tam giác vuông, ta có: 

\(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)

Áp dụng tính chất tia phân giác trong tam giác ta có:

\(\frac{AD}{DC}=\frac{AB}{BC}=\frac{12}{20}=\frac{3}{5}\)

mà AD + DC = AC = 16 cm nên \(AD=6cm.\)

c) Xét tam giác BEA và tam giác BDC có:

\(\widehat{ABE}=\widehat{CBD}\)  (BD là tia phân giác)

\(\widehat{BAE}=\widehat{BCD}\)  (Cùng phụ với góc \(\widehat{ABC}\)  )

\(\Rightarrow\Delta BEA\sim\Delta BDC\left(g-g\right)\)

\(\Rightarrow\frac{BE}{BD}=\frac{AB}{CB}\)

Lại có \(\frac{AB}{CB}=\frac{AD}{DC}\Rightarrow\frac{BE}{BD}=\frac{AD}{DC}\Rightarrow\frac{DB}{EB}=\frac{DC}{DA}\)  

17 tháng 8 2018

Bài giải : 

a) Xét tam giác HBA và tam giác ABC có:

Góc B chung

^BHA=^BAC(=90o)

⇒ΔHBA∼ΔABC(g−g)

⇒HBAB =ABCB ⇒AB2=BH.BC

b) Áp dụng định lý Pi-ta-go cho tam giác vuông, ta có: 

BC=√AB2+AC2=20(cm)

Áp dụng tính chất tia phân giác trong tam giác ta có:

ADDC =ABBC =1220 =35 

mà AD + DC = AC = 16 cm nên AD=6cm.

c) Xét tam giác BEA và tam giác BDC có:

^ABE=^CBD  (BD là tia phân giác)

^BAE=^BCD  (Cùng phụ với góc ^ABC  )

⇒ΔBEA∼ΔBDC(g−g)

⇒BEBD =ABCB 

Lại có ABCB =ADDC ⇒BEBD =ADDC ⇒DBEB =DCDA   

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạg với ΔHAC

b: BC=căn 3^2+4^2=5cm

AH=3*4/5=2,4cm

c: góc ADE=90 độ-góc ABD

góc AED=góc BEH=90 độ-góc DBC

mà góc ABD=góc DBC

nên góc ADE=góc AED

=>AD=AE