K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2017

A B C M G

a) Xét tam giác ABC vuông tại A, áp dụng định lý Pytago ta có :

\(BC^2=AB^2+AC^2=5^2+12^2=25+144=169=13^2\)

Mà BC>0 nên BC = 13 cm.

 Vậy BC = 13 cm.

b) AM là đường trung tuyến ứng với cạnh huyền nên \(AM=\frac{1}{2}BC=\frac{13}{2}=6,5\)(cm)

Vậy AM = 6,5 cm.

c) G là trọng tâm tam giác nên ta có \(AG=\frac{2}{3}AM=\frac{2}{3}.6,5=\frac{13}{3}\)(cm)

Vậy AG = 13/3 cm.

16 tháng 4 2016

Bạn tự vẽ hình nha!

a.

Xét tam giác ABM và tam giác ACM có:

AB = AC (tam giác ABC cân tại A)

B = C (tam giác ABC cân tại A)

BM = CM (AM là trung tuyến của tam giác ABC)

=> Tam giác ABM = Tam giác ACM (c.g.c)

b.

Tam giác ABM = Tam giác ACM (theo câu a)

=> M1 = M2 (2 góc tương ứng)

mà M1 + M2 = 180 (2 góc kề bù)

=> M1 = M2 = 180/2 = 90

=> AM _I_ BC

( Cái này bạn chứng minh theo cách: AM là trung tuyến của tam giác ABC cân tại A nên AM là đường trung trực của tam giác ABC cũng được. Tại mình sợ bạn chưa học tới)

BM = CM = BC/2 (AM là trung tuyến của tam giác ABC)

=> BM = CM = 10/2 = 5

Áp dụng định lí Pytago vào tam giác ABM vuông tại A ta có:

AB^2 = BM^2 + AM^2

13^2 = 5^2 + AM^2

AM^2 = 169 - 25

AM = 12

Ta có: AG = 2/3 AM (tính chất trọng tâm)

=> AG = 2/3 . 12

AG = 8

20 tháng 4 2022

Hình em tự vẽ ra nhé.

Áp dụng đl pytago vào tam giác vuông ABC có:

AB^2 + AC^2 = BC^2

-- > BC = 5 (cm)

Vì tam giác ABC vuông tại A, AM là đường trung tuyến ứng với cạnh huyền BC nên ta có:

\(AM=\dfrac{1}{2}BC=\dfrac{1}{2}.5=2,5\left(cm\right)\)

Vì G là trọng tâm tâm giác ABC, ta lại có:

\(AG=\dfrac{2}{3}AM=\dfrac{2}{3}.2,5=\dfrac{5}{3}\left(cm\right)\)

ai đó giúp me vs

 

25 tháng 4 2018

Giải:

a) Ta có: MB=MC = 1/2 BC = 1/2 * 24 = 12(CM)

Tam giác ABC vuông tại A, theo định lí Py-ta-go, ta có:

AM= AB- MB= 152 - 122 = 81

AM = \(\sqrt{81}\)= 9(cm)

b) G là trọng tâm cùa tam giác ABC

Suy ra   AG = 2/3 * AM = 2/3 * 9 = 6(cm)

25 tháng 4 2018

Cảm ơn bn ạ

10 tháng 12 2021

ai ko giúp mình với 

 

10 tháng 12 2021

\(a,\) Xét \(\Delta AMB\) và \(\Delta AMC\) có:

\(\left\{{}\begin{matrix}AB=AC\\\widehat{B}=\widehat{C}\\BM=MC\end{matrix}\right.\)

\(\Rightarrow\Delta AMB=\Delta AMC\left(c.g.c\right)\)

\(\Rightarrow\widehat{BAM}=\widehat{CAM}\)

\(\Rightarrow AM\) là tia phân giác \(\widehat{BAC}\)

\(b,\) Vì \(\Delta ABC\) cân tại \(A\)

Mà \(AM\) là tia phân giác \(\widehat{BAC}\)

\(\Rightarrow AM\) là đường trung trực \(\Delta ABC\)

\(\Rightarrow AM\perp BC\) tại \(M\)