Tìm GTNN và GTLN của: \(y=\frac{x^2}{x^2+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt Cauchy cho 2 số không âm :
\(x^4+y^2\ge2\sqrt{x^4y^2}=2x^2y=2xy\cdot x=x\)( vì \(xy=1\))
\(\Rightarrow\frac{x}{x^4+y^2}\le\frac{x}{x}=1\)
Hoan toàn tương tự : \(\frac{y}{x^2+y^4}\le\frac{y}{y}=1\)
Khi đó :
\(\frac{x}{x^4+y^2}+\frac{y}{x^2+y^4}\le1+1=2\)
Hay \(A\le2\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x^4=y^2\\x^2=y^4\\xy=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=y=1\\x=y=-1\end{cases}}}\)
\(y=\frac{x^2+1}{x^2-x+1}=\frac{x^2-x+1}{x^2-x+1}+\frac{x}{x^2-x+1}=1+\frac{1}{x+\frac{1}{x}-1}\)
Nếu x =0 => y =1
Nếu x> 0 => \(x+\frac{1}{x}\ge2\Rightarrow y\le1+\frac{1}{2-1}=2\)
y lớn nhất = 2 khi x =1
Nếu x< 0 => \(-x+\frac{1}{-x}\ge2\Rightarrow x+\frac{1}{x}\le-2\Rightarrow y\ge1+\frac{1}{-2-1}=\frac{2}{3}\)
=> y nhỏ nhất = 2/3 khi x=-1
( Bạn có thể giải = cách đưa về PT bậc 2 nhé)
1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)
\(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)
max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)
\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t
1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)
vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)
dấu = xảy ra khi x-2018=0
=> x=2018
Vậy Min A=\(\frac{2017}{2017}\)khi x=2018
2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)
\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)
để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất
mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)
dấu = xảy ra khi \(x+\frac{3}{2}=0\)
=> x=\(-\frac{3}{2}\)
Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)
3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)
để M lớn nhất => x2+4 nhỏ nhất
mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)
dấu = xảy ra khi x2 =0
=> x=0
Vậy Max M\(=\frac{7}{2}\)khi x=0
ps: bài này khá dài, sai sót bỏ qua =))
\(\Leftrightarrow yx^2+y=x^2\)
\(\Leftrightarrow x^2\left(y-1\right)+y=0\)
*Xét y = 1 thì....
*Xét y khác 1
Có \(\Delta'=0-y\left(y-1\right)\)
\(=-y^2+y\)
Pt có nghhieemj \(\Leftrightarrow\Delta'\ge0\)
\(\Leftrightarrow0\le y\le1\)
Làm nốt nha