Trong các tam giác có một góc bằng \(\alpha\) và tổng hai cạnh kề góc ấy bằng \(s\). Tam giác nào có chu vi nhỏ nhất?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta cmr trong các ∆ thỏa mãn đk thì ∆ cân tại đỉnh có góc α là ∆ có chu vi nhỏ nhất.
Ta xét 2 ∆ ABC và AB'C' có:
AC > AB, AC' = AB', AB + AC = AB' + AC' = s, góc BAC = góc B'AC' = α (AC' và AC, AB' và AB cùng nằm trên đường thẳng)
=> B' nằm ngoài AB, C' nằm trong AC và BB' = CC'
Từ B kẻ đt p // B'C', từ C' kẻ đt q // AB', p và q cắt nhau tại D (D khác phía với B so với AC), p cắt AC tại E. BB'C'D là hình bình hành => DC' = BB' = CC'
Theo Talet EC' / BB' = AC' / AB' = 1 => EC' = BB' = CC' = DC'
=> ∆ DEC vuông tại D => ∆ DBC vuông tại D
=> BC > BD = B'C'
=> AB + AC + BC > AB' + AC' + B'C' (đ.p.c.m)
suy ra ta có :
2ab2 - ab = 2326 . < Đặt tính ra cho dễ hiểu >
ab hay số cần tìm là 36
< CÁC BẠN TỰ TÌM CÁCH GIẢI NHA >
ai nhanh nhat miktick choa ak, giup mik vs dc ko ak vi mik can gap