1)Tìm số nguyên n biết
4n+1 chia hết cho 2n-1
2)So sánh M=24.5^4+5^4.26/5^3.15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\dfrac{5^4\cdot50}{5^3\cdot15}=\dfrac{50}{3}>\dfrac{50}{4}=N\)
P = (4n-5)/(2n-1) = (4n-2 - 3)/(2n-1) = 2 - 3/(2n-1)
P thuộc Z khi và chỉ khi 3/(2n-1) thuộc Z <=> 2n-1 là ước của 3
* 2n - 1 = -1 <=> n = 0
* 2n - 1 = -3 <=> n = -1 (loại, vì n tự nhiên)
* 2n - 1 = 1 <=> n = 1
* 2n - 1 = 3 <=> n = 2
Vậy có 3 giá trị của n tự nhiên là: 0, 1, 2
-------------
Bài 1:
b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)
\(=4n^2-9-4n^2+36n\)
\(=36n-9⋮9\)
11:
n^3-n^2+2n+7 chia hết cho n^2+1
=>n^3+n-n^2-1+n+8 chia hết cho n^2+1
=>n+8 chia hết cho n^2+1
=>(n+8)(n-8) chia hết cho n^2+1
=>n^2-64 chia hết cho n^2+1
=>n^2+1-65 chia hết cho n^2+1
=>n^2+1 thuộc Ư(65)
=>n^2+1 thuộc {1;5;13;65}
=>n^2 thuộc {0;4;12;64}
mà n là số tự nhiên
nên n thuộc {0;2;8}
Thử lại, ta sẽ thấy n=8 không thỏa mãn
=>\(n\in\left\{0;2\right\}\)
a: \(\Leftrightarrow2n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{1;0;2;-1\right\}\)
c: \(\Leftrightarrow n+1\in\left\{1;-1\right\}\)
hay \(n\in\left\{0;-2\right\}\)
a) Ta có \(\frac{12-n}{8-n}=\frac{8-n+4}{8-n}=1+\frac{4}{8-n}\)
\(12-n⋮8-n\Leftrightarrow4⋮8-n\)
hay \(8-n\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
\(\Rightarrow n\in\left\{7;9;6;10;4;12\right\}\)
b) Ta có \(\frac{4n+5}{2n+1}=\frac{4n+2+3}{2n+1}=2+\frac{3}{2n+1}\)
\(4n+5⋮2n+1\Leftrightarrow3⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow n\in\left\{0;-1;1;-2\right\}\)
Mình lỡ bấm gửi trước khi làm xong, bài tiếp theo nè.
Câu 1 :
\(3^{1000}=3^{2\times500}=\left(3^2\right)^{500}=9^{500}\)
\(2^{1500}=2^{3\times500}=\left(2^3\right)^{500}=8^{500}\)
Vì \(8< 9\)nên \(8^{500}< 9^{500}\)
Vậy \(2^{1500}< 3^{1000}\)
\(4n+1⋮2n-1\)
\(\Leftrightarrow2\left(2n-1\right)+3⋮2n-1\)
\(\Leftrightarrow3⋮2n-1\)
\(\Leftrightarrow2n-1\in\left\{1;3;-1;-3\right\}\)
\(\Leftrightarrow2n\in\left\{2;4;0;-2\right\}\)
\(\Leftrightarrow n\in\left\{1;2;0;-1\right\}\)