K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2016

x= 0.761322463768116,

x= 0.369494467346496,

x=1.57660410301179

13 tháng 3 2018

\(x^4-2x^3+3x^2-2x+1=0\)

Chia cả hai vé cho \(x^2\)

\(\Leftrightarrow x^2-2x+3-\dfrac{2}{x}+\dfrac{1}{x^2}\)

\(\Leftrightarrow x^2+2+\dfrac{1}{x^2}-2\left(x+\dfrac{1}{x}\right)+1=0\)

\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^2-2\left(x+\dfrac{1}{x}\right)+1=0\)

Đặt x+1/x = a, ta có:

\(a^2-2a+1=0\)

\(\Leftrightarrow\left(a-1\right)^2=0\)

\(\Leftrightarrow a=1\)

\(\Leftrightarrow x+\dfrac{1}{x}=1\)

\(\Leftrightarrow x^2+1=x\)

\(\Leftrightarrow x^2-x+1=0\)

\(\Leftrightarrow x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=0\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\)

Do \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+3>0\)

Do đó phương trình vô nghiệm

9 tháng 2 2017

a) \(x^4+2x^3-2x^2+2x-3=0\)

  \(\Leftrightarrow x^4-x^3+3x^3-3x^2+x^2-x+3x-3=0\)

 \(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2+x+3\right)=0\)

 \(\Rightarrow\orbr{\begin{cases}x-1=0\\x^3+3x^2+x+3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\\left(x+3\right)\left(x^2+1\right)=0\left(1\right)\end{cases}}\)

Giải (1) : \(\left(x+3\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x^2+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-3\\x^2=-1\end{cases}}\)

Mà \(x^2\)>0

\(\Rightarrow\)pt vô nghiệm

Vậy \(x\in\left(-3;1\right)\)


 

\(\)

12 tháng 3 2017

* Xét x = 0, thay vào pt đã cho ta được:
2 = 0 ( Vô lý )
Suy ra x = 0 không là nghiệm của pt đã cho.
* Với x khác 0, chia cả 2 vế của pt cho x^2 ta được:
\(x^2+x+3+\dfrac{2}{x}+\dfrac{2}{x^2}=0\)
\(\Leftrightarrow\left(x^2+\dfrac{2}{x^2}\right)+\left(x+\dfrac{2}{x}\right)+3=0\)
\(\Leftrightarrow\left(x+\dfrac{2}{x}\right)^2-2.x.\dfrac{2}{x}+\left(x+\dfrac{2}{x}\right)+3=0\)
\(\Leftrightarrow\left(x+\dfrac{2}{x}\right)^2+\left(x+\dfrac{2}{x}\right)-1=0\) (1)
Đặt \(x+\dfrac{2}{x}=t\)
Khi đó (1) trở thành:
\(t^2+t-1=0\) (2)
Giải pt (2) tìm t, từ đó tìm được x theo t .

6 tháng 5 2022

a) 3x + 18 = 0

<=>  3*(x+6)=0

<=> x+6=0

<=> x=-6

Vậy S={-6}

6x-7=3x+2

<=> 6x - 3x= 2+7

<=> 3x=9

<=> x=3 

Vậy S={ 3}

c) mk ko hỉu rõ đề

5 tháng 7 2018

\(\frac{3x-1}{x-1}-\frac{2x+5}{x+3}+\frac{1}{x^2+2x-3}=1.\)

\(ĐK:\hept{\begin{cases}x-1\ne0\\x+3\ne\\x^2+2x-3\ne0\end{cases}0}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne\Leftrightarrow-3\end{cases}}\)

\(\Leftrightarrow\left(3x-1\right)\left(x+3\right)-\left(2x+5\right)\left(x-1\right)+4-x^2-2x+3=0\)

\(\Leftrightarrow3x^2+9x-x-3-2x^2+2x-5x+5+4-x^2-2x+3=0\)

\(\Leftrightarrow3x+9=0\)

\(\Leftrightarrow3x=-9\Leftrightarrow x=-3\) (loại)

 Vậy pt vô No

5 tháng 7 2018

Số t tính đc rất thú dị :)