Cho tam giác nhọn ABC, các đường trung tuyến AD và BE cắt nhau tại G. Biết AD=6cm ,BE=9cm. Tính độ dài các đoạn thẳng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có BE và AD là 2 đường trung tuyến=>G là trực tâm
=>BG=\(\dfrac{2}{3}\)BE=\(\dfrac{2}{3}\).9cm =6 cm
và GD= \(\dfrac{1}{2}\)AG=\(\dfrac{1}{2}\).8cm =4cm
KL
Đề bài thiếu, dữ liệu chỉ có thế này thì không đủ để tính BC
Xét ΔBAC có
H,M lần lượt là trung điểm của BC,BA
nên HM là đường trung bình
=>HM=AC/2=10/2=5cm
Theo tính chất đường trung tuyến ta có
\(\frac{AG}{AD}=\frac{GB}{BE}=\frac{2}{3}\)
\(\Leftrightarrow\frac{AG}{12}=\frac{GB}{9}=\frac{2}{3}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{AG}{12}=\frac{2}{3}\\\frac{GB}{9}=\frac{2}{3}\end{cases}\Rightarrow\orbr{\begin{cases}AG=8\left(cm\right)\\GB=6\left(cm\right)\end{cases}}}\)
Vì \(G\in BE\)
\(\Rightarrow BG+GE=BE\)
\(\Rightarrow GE=9-6=3\left(cm\right)\)
Vậy \(AG=8cm\) và \(GE=3cm\)
Bác lm dài thế >: t/c 3 đg trung tuyến áp dụng luôn cx đc mà.
Theo t/c 3 đường trung tuyến ta có :
\(AG=\frac{2}{3}AD=\frac{2}{3}.12=\frac{24}{3}=8\left(cm\right)\)
\(GE=\frac{1}{3}BE=\frac{1}{3}.9=\frac{9}{3}=3\left(cm\right)\)
BC=căn 8^2+6^2=10cm
=>AD=5cm
AG=2/3*5=10/3cm
GD=5-10/3=5/3cm
Lời giải:
$G$ là trọng tâm tam giác $ABC$
Theo tính chất trọng tâm và đường trung tuyến thì:
$\frac{AG}{AD}=\frac{2}{3}$
$\Rightarrow 3AG=2AD$
$\Rightarrow 2(AD-AG)=AG$
$\Rightarrow 2DG=AG\Rightarrow \frac{DG}{AG}=\frac{1}{2}$
$\frac{BG}{BE}=\frac{2}{3}$
$\Rightarrow \frac{BE-GE}{BE}=\frac{2}{3}$
$\Rightarrow 1-\frac{GE}{BE}=\frac{2}{3}$
$\Rightarrow \frac{GE}{BE}=\frac{1}{3}$
$\Rightarrow \frac{BE}{EG}=3$
b: góc HID+góc HKD=180 độ
=>HIDK nội tiếp
=>góc HIK=góc HDK
=>góc HIK=góc HCB
=>góc HIK=góc HEF
=>EF//IK