Cho các số thực x;y;z thỏa mãn x+y+z=0 và x2+y2+z2=1
CM: \(x^5+y^5+z^5=\frac{5}{4}\left(2z^3-z\right)\)
P/s: các bạn giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \({x^2} = 4 = {2^2} = {\left( { - 2} \right)^2} \Leftrightarrow x = \pm 2\)
b) \({x^3} = - 8 = {\left( { - 2} \right)^3} \Leftrightarrow x = - 2.\)
- Chú ý:
Trong toán học, căn bậc chẵn của một số là một số lớn hơn 0. Do đó số âm không có căn bậc chẵn.
Đáp án C
Ta có
Khi đó
Vậy giá trị nhỏ nhất của biểu thức P là 3 + 2 2
Để x + 2y và 2x - y là số hữu tỷ, ta có thể thiết lập hệ phương trình sau:
x + 2y = a/b (1)
2x - y = c/d (2)
Trong đó a, b, c, d là các số nguyên và b, d khác 0.
Từ phương trình (1), ta có x = a/b - 2y. Thay vào phương trình (2), ta có:
2(a/b - 2y) - y = c/d
2a/b - 4y - y = c/d
2a/b - 5y = c/d
Để 2a/b - 5y là số hữu tỷ, ta cần 5y cũng là số hữu tỷ. Vì vậy, y phải là số hữu tỷ.
Tiếp theo, để x = a/b - 2y là số hữu tỷ, ta cần a/b - 2y cũng là số hữu tỷ. Vì y là số hữu tỷ, nên a/b - 2y cũng là số hữu tỷ.
Vậy, nếu x + 2y và 2x - y là số hữu tỷ, thì x và y đều là số hữu tỉ.
Chọn C.
Phương pháp: Kiểm tra tính đúng sai của từng mệnh đề.
Cách giải:
Bài 1:
$x-1=|2x-1|\geq 0\Rightarrow x\geq 1$
$\Rightarrow 2x-1>0\Rightarrow |2x-1|=2x-1$. Khi đó:
$2x-1=x-1\Leftrightarrow x=0$ (không thỏa mãn vì $x\geq 1$)
Vậy không tồn tại $x$ thỏa đề.
Bài 2:
Nếu $x\geq \frac{1}{3}$ thì:
$3x-1=2x+3$
$\Leftrightarrow x=4$ (tm)
Nếu $x< \frac{1}{3}$ thì:
$1-3x=2x+3$
$\Leftrightarrow -2=5x\Leftrightarrow x=\frac{-2}{5}$ (tm)
Vậy......
Theo đề: \(x+y+z=0\)
\(\Rightarrow x+y=-z\)
\(\Rightarrow-\left(x+y\right)=z\)
\(\Leftrightarrow-\left(x+y\right)^5=z^5\)
\(x^2+y^2+z^2=1\)
\(\Rightarrow x^2+y^2=1-z^2\)
\(\Rightarrow\left(x+y\right)^2-2xy=1-z^2\)
\(\Rightarrow\left(x+y\right)^2=1-z^2+2xy\)
\(\Rightarrow\left(-z\right)^2=1-z^2+2xy\)
\(\Leftrightarrow xy=\frac{2z^2-1}{2}\)
Nên ta có:
\(VT=x^5+y^5+z^5=x^5+y^5-\left(x+y\right)^5\)
\(=x^5+y^5-\left(x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5\right)\)
\(=x^5+y^5-x^5-5x^4y-10x^3y^2-10x^2y^3-5xy^4-y^5\)
\(=-5x^4y-10x^3y^2-10x^2y^3-5xy^4\)
\(=-5xy\left(x^3+y^3\right)-10x^2y^2\left(x+y\right)\)
\(=-5xy\left(x+y\right)\left(x^2-xy+y^2\right)-10x^2y^2\left(x+y\right)\)
\(=-5xy\left(x+y\right)\left(x^2-xy+y^2+2xy\right)\)
\(=-5xy\left(x+y\right)\left(x^2+xy+y^2\right)\)
\(=-5.\frac{2z^2-1}{2}.\left(-z\right).\left(1-z^2+\frac{2z^2-1}{2}\right)\)
\(=\frac{5z\left(2z^2-z\right)}{4}=\frac{5}{4}z\left(2x^2-1\right)=\frac{5}{4}\left(2z^3-z\right)=VP\)
=> đpcm