K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2019

trl

câu b bài này hình như mik làm rồi

để mik làm xem

15 tháng 4 2019

bạn giúp mik làm câu b nhé thanks 

30 tháng 3 2016

Bài này ngó qua ngó lại thì không khó lắm. Tối giải nha. 

22 tháng 6 2016

bài này có 1 ý thui à bạn 

24 tháng 8 2022

A B D C E F M
Vẽ AM ⊥ AF cắt tia CB tại M.
△AME vuông tại A, đg cao AB: \(\dfrac{1}{AB^2}\) = \(\dfrac{1}{AM^2}\)+\(\dfrac{1}{AE^2}\) (1)
Xét ΔABM vuông tại B và ΔADF vuông tại D có: góc MAB = góc FAD (cùng phụ góc BAE)
⇒ △ABM ∽ △ADF (g.g)
⇒ \(\dfrac{AM}{AF}\) = \(\dfrac{AB}{AD}\) = 2
⇒ AM = 2AF (2)
(1)(2) ⇒ \(\dfrac{1}{AB^2}\) = \(\dfrac{1}{4AF^2}\)+\(\dfrac{1}{AE^2}\)  


              

19 tháng 7 2019

Từ F kẻ đường thẳng song song BC cắt AB tại M
\(\Rightarrow\) \(AM^2 + MF^2 = AF^2 \)(1)
Mà \(MF =BC =\dfrac{AB}{2}\)
(1) \(\Leftrightarrow\) \(AM^2 + \dfrac{AB^2}{4} = AF^2\)
\(\Rightarrow\)\(\dfrac{AM^2}{AF^2} + \dfrac{AB^2}{4AF^2} =1\) (2)
Mà \(\dfrac{AM}{AF} = \dfrac{AB}{AE}\)
(2) \(\Rightarrow\) \(\dfrac{AB^2}{AE^2} +\dfrac{AB^2}{4AF^2} =1\)
\(\Rightarrow\) \(\dfrac{1}{AB^2}=\dfrac{1}{AE^2}+\dfrac{1}{4AF^2}\)

14 tháng 1 2017

dựng đường thẳng qua A vuông góc với AE cắt BC tại M.Khi đó ta có tam giác AME vuông tại A có AB là đường cao ứng với cạnh huyền nên theo hệ thức lượng trong tam giác ta có 
1/AB^2=1/AE^2 + 1/AM^2 
ta chỉ cần chứng minh AM^2= 4AF^2 hay AM=2AF là được 
muốn chứng minh điều này  chỉ cần xét 2 tam giác đồng dạng là ABM và ADF có: 
góc B=góc D=90 độ 
góc MAB=góc FAD (cùng phụ với góc BAE ) 
vậy 2 tam giác này đồng dạng với nhau(g.g) 
suy ra AM/AF=AB/AD=AB/BC=2 
từ đó suy ra đpcm là xong. 
.Chỉ cần bám sát lí thuyết là làm được.Khi mình làm một bài gì phải có sự xem xét, chẳng hạn như bầi này mình đọc lên thấy có tỉ lệ bình phương mình phải nghĩ ra hệ thức đường cao liên quan với canh góc vuông trong tam giác vuông

k mk nhé thanks bạn nhìu nhìu

14 tháng 1 2017

mk nhanh nhất nha

26 tháng 11 2016

Trịnh Đức Minh