Bài 1: Chứng minh với mọi số tự nhiên n thì a = n(n + 1)(n + 2)(n + 3) + 1 là số
chính phương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
an = n(n+1)(n+2)(n+3) + 1
= (n2 + 3n)(n2 + 3n + 2) +1
= (n2 + 3n)2+ 2(n2 + 3n) + 1
= (n2 + 3n + 1)2
Với n là số tự nhiên thì (n2 + 3n + 1)2 cũng là số tự nhiên, vì vậy, an là số chính phương.
giải : Ta có :
an = n(n + 1) (n + 2) (n + 3) + 1
= (n2 + 3n) (n2 + 3n + 2) + 1
= (n2 + 3n)2 + 2(n2 + 3n) + 1
= (n2 + 3n + 1)2
Với n là số tự nhiên thì n2 + 3n + 1 cũng là số tự nhiên, theo định nghĩa, an là số chính phương.
giải : Ta có :
an = n(n + 1) (n + 2) (n + 3) + 1
= (n2 + 3n) (n2 + 3n + 2) + 1
= (n2 + 3n)2 + 2(n2 + 3n) + 1
= (n2 + 3n + 1)2
Với n là số tự nhiên thì n2 + 3n + 1 cũng là số tự nhiên, theo định nghĩa, an là số chính phương.
Ta có:
an = n(n+1)(n+2)(n+3) + 1
= (n2 + 3n)(n2 + 3n + 2) +1
= (n2 + 3n)2+ 2(n2 + 3n) + 1
= (n2 + 3n + 1)2
Với n là số tự nhiên thì (n2 + 3n + 1)2 cũng là số tự nhiên, vì vậy, an là số chính phương.
Ta có:
an = n(n+1)(n+2)(n+3) + 1
= (n2 + 3n)(n2 + 3n + 2) +1
= (n2 + 3n)2+ 2(n2 + 3n) + 1
= (n2 + 3n + 1)2
Với n là số tự nhiên thì (n2 + 3n + 1)2 cũng là số tự nhiên, vì vậy, an là số chính phương.
a= [n(n+3][(n+1)(n+2)]+1
a=[n^2+3n][n^2+3n+2]+1
ĐẶt n^2+3n+1=b( b thuộc Z)
=> a=(b-1)(b+1)+1
=> a=b^2-1+1
=> a=b^2
=> a=(n^2+3n+1)^2
Mà n là số tự nhiên => n^2+3n+1 là số nguyên => a là số chính phương
T i ck nha
a=n(n+1)(n+2)(n+3)+1
=(n2+3n)(n2+3n+2)+1
Đặt n2+3n+1=m(m thuộc N*)
=>a= (m-1)(m+1)+1=m2
Vậy...................