Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với giá trị nào của số tự nhiên a thì 5a +17 trên 4a+13 có giá trị lớn nhất và đó là mấy
Lời giải:
\(A=\frac{5a+17}{4a+13}=\frac{\frac{5}{4}(4a+13)+\frac{3}{4}}{4a+13}=\frac{5}{4}+\frac{3}{4(4a+13)}\)
Để $A$ lớn nhất thì $\frac{3}{4(4a+13)}$ lớn nhất.
Điều này xảy ra khi $4(4a+13)$ là số tự nhiên nhỏ nhất khác $0$.
Với $a$ tự nhiên, $4(4a+13)\geq 1$
$\Rightarrow a\geq -3,18$
$\Rightarrow$ số tự nhiên $a$ nhỏ nhất là $0$.
Lời giải:
\(A=\frac{5a+17}{4a+13}=\frac{\frac{5}{4}(4a+13)+\frac{3}{4}}{4a+13}=\frac{5}{4}+\frac{3}{4(4a+13)}\)
Để $A$ lớn nhất thì $\frac{3}{4(4a+13)}$ lớn nhất.
Điều này xảy ra khi $4(4a+13)$ là số tự nhiên nhỏ nhất khác $0$.
Với $a$ tự nhiên, $4(4a+13)\geq 1$
$\Rightarrow a\geq -3,18$
$\Rightarrow$ số tự nhiên $a$ nhỏ nhất là $0$.