K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2016

a2.a2=a4=(a2)2 là số chính phương

Dễ mà lần sau trc khi hỏi nghĩ kĩ chút đã nhé

2 tháng 7 2021

2. 

Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x\(\in\) N)

 Ta có : x (x+1) (x+2 ) (x+3 ) +1 

 =(  x2 + 3x ) (x2 + 2x + x +2 )  +1 

= (  x2 + 3x ) (x2 +3x + 2 ) +1  (*)

Đặt t = x2 + 3x  thì  (* ) =  t ( t+2 ) + 1=  t2 + 2t +1  =  (t+1) = (x2 + 3x + 1 )2

=>  x (x+1) (x+2 ) (x+3 ) +1  là số chính phương 

hay tích 4 số tự nhiên liên tiếp  cộng  1 là số chính phương 

26 tháng 7 2016

mau lên các bạn!

11 tháng 6 2017

câu trả lời là không nhé.. ta có thể chứng minh: 

Giả sử :  A,B là 2 số chính phương... \(\sqrt{A}=a\)

\(\sqrt{B}=b\) c là số không chính phương.

tích  A.B.c.......... \(\sqrt{A.Bc}=a.b\sqrt{c}\)mà c ko là số chính phương suy ra tích 3 số này ko là số chính phương nha

2 tháng 8 2023

Gọi 2 số chính phương liên tiếp đó là \(n^2,\left(n+1\right)^2\). Ta có:

\(P=n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2\)

\(=n^2+n^2+2n+1+n^2\left(n^2+2n+1\right)\)

\(=n^4+2n^3+3n^2+2n+1\)

Ta có \(\dfrac{P}{n^2}=n^2+2n+3+\dfrac{2}{n}+\dfrac{1}{n^2}\)

\(=\left(n+\dfrac{1}{n}\right)^2+2\left(n+\dfrac{1}{n}\right)+1\)

\(=\left(n+\dfrac{1}{n}+1\right)^2\)

\(\Rightarrow P=\left[n\left(n+\dfrac{1}{n}+1\right)\right]^2=\left(n^2+n+1\right)^2=\left[n\left(n+1\right)+1\right]^2\)

 Dễ dàng kiểm chứng được \(2|n\left(n+1\right)\), do đó \(n\left(n+1\right)+1\) là số lẻ, suy ra đpcm.

 

 

 

2 tháng 8 2023

Hai số chính phương liên tiếp là \(n^2;\left(n+1\right)^2\)

Theo đề ta có :

\(n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2\)

\(=n^2+n^2+2n+1+n^4+2n^3+n^2\)

\(=\left(n^4+n^3+n^2\right)+\left(n^3+n^2+n\right)+\left(n^2+n+1\right)\)

\(=n^2\left(n^2+n+1\right)+n\left(n^2+n+1\right)+\left(n^2+n+1\right)\)

\(=n^2\left(n^2+n+1\right)+n\left(n^2+n+1\right)+\left(n^2+n+1\right)\)

\(=\left(n^2+n+1\right)^2\)

\(=\left[n\left(n+1\right)+1\right]^2\)

mà \(n\left(n+1\right)⋮2\) (là 2 số tự nhiên liên tiếp)

\(\Rightarrow n\left(n+1\right)+1\) là số lẻ

\(\Rightarrow\left[n\left(n+1\right)+1\right]^2\) là số chính phương lẻ

\(\Rightarrow dpcm\)

22 tháng 6 2015

Gọi 2 số đó là u và v

Viết u = ax.by.cz.... (a;b;c là thừa số nguyên tố)

v = pm.qn.rt.... (p;q;r,.. là thừa số nguyên tố)

Vì u, v nguyên tố cùng nhau nên a;b;c ;p;q;r,... khác nhau 

=> u.v =( ax.by.cz....). (pm.qn.rt....) =  ax.by.czpm.qn.rt....

Do u.v là số chính phương mà; a;b;c;p;q;r,... khác nhau nên x;y;x;m;n;t,.. là số chẵn

=> u; v là số chính phương

22 tháng 2 2019

Câu trả lời rất hay

11 tháng 1 2016

Giả sử: a=m2+n2
b=c2+d2
=> m,n,c,d∈Z
ab=(m2+n2)(c2+d2)
ab=m2(c2+d2)+n2(c2+d2)
ab=(m2c2+m2d2)+(n2c2+n2d2)
ab=(mc)2+(md)2+(nc)2+(nd)2
ab=(mc)2+2mcnd+(nd)2+(nc)2−2ncmd+(md)2
ab=(mc+nd)2+(nc−md)2
Vì m,n,c,d∈Z=>mc+nd∈Z,mc−nd∈Z
Vậy tích ab là tổng hai số chính phương