Cho tổng sau gồm 2015 số hạng:
A=1/1 mũ 2+1/2 mũ 3+...+1/2015 mũ 2016
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:T=2+22+...+22015+22016
T có số số hạng là:\(\left(2016-1\right):1+1=2016\)(số hạng)\(⋮\) 3
\(\Rightarrow T=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)...+\left(2^{2014}+2^{2015}+2^{2016}\right)\)
\(\Rightarrow T=\left(2+2^2+2^3\right)+2^3\left(2+2^2+2^3\right)+...+2^{2013}\left(2+2^2+2^3\right)\)
\(\Rightarrow T=14+2^3.14+...+2^{2013}.14\)
\(\Rightarrow T=14.\left(2+2^3+...+2^{2013}\right)⋮14\)
Vậy \(T⋮14\)
(đpcm)
Bạn An Thanh ơi!
Nếu mình giải là
Theo đề ta có:
T= 2+22+........+22015+22016
T=22016+22015+..........+22+2
2T=22017+22017+......+22017+22017
2T=22017.2016
T=22017.1008
Vì 22017chia hết cho 14 và 1008 chia hết cho 14 nên T chia hết cho 14
Làm vậy có đúng không bạn?
Bạn nhớ đóng góp ý kiến cho mình nha!
Dễ dàng nhận thấy \(A=\frac{2015^{2015}+1}{2015^{2016}+1}\)cùng tử với \(B=\frac{2015^{2015}+1}{2015^{2017}+1}\)
Ta lại nhận thấy \(2015^{2016}< 2015^{2017}\)
\(\Rightarrow2015^{2016}+1< 2015^{2017}+1\)
Do đó \(\frac{2015^{2015}+1}{2015^{2016}+1}< \frac{2015^{2015}+1}{2015^{2017}+1}\) hay A < B
Ta có:31+32+........+32016
=(31+32)+.......+(32015+32016)
=3(1+3)+.......+32015(1+3)
=3.4+......+32015.4
=4(3+.....+32015)
VÌ 4 chia hết cho4 nên A chia hết cho 4
Ta có 3+32+33+.......+32014+32015+32016
(3+32+33)+......+(32014+32015+32016)
=3(1+3+6)+....+32014(1+3+6)
=3.7+........+32014.7
=7.(3+...+32014)
Vì7 chia hết cho 7 nênA sẽ chia hết cho 7
Mong các bạn góp ý để bài làm của mình dc hoàn thiện hơn ☺☺☺
đặt tử là T ta có:
2T=2(1+2+22+23+...+22015)
2T=2+22+23+...+22016
2T-T=(2+22+23+...+22016)-(1+2+22+23+...+22015)
T=22016-1
thay T vào tử của S ta được:\(S=\frac{2^{2016}-1}{1-2^{2016}}=-1\)
Đặt A =40+41+42+43+...+42016
=>4.A=4.(40+41+43+...+42016)
=>4.A=41+42+43+44+...+42016+42017
=>4.A-A=(41+42+43+44+...+42016+42017) - ( 40+ 41+42+43+...+42016)
=>(4-1).A=40-42017
=>3 . A = 1 - 42017
~~ Bạn nào thấy đúng thì tk nha~~
1,(a,b)+[a,b]=10
Gọi ƯCLN(a,b) là d
BCNN(a,b) là m, ta có
a=dm (m,n)=1
a-dn m>n
=> [a,b]=dmn
Ta thấy (a,b)+[a,b]=10
Mà (a,b)=d;[a,b]=dmn
=> d+dmn=10 => d(mn+1)=10
=> d và mn+1 đều thuộc Ư(10)
Ư(10)={1;2;5;10}
d,mn+1 thuộc {1;2;5;10}
Ta có bảng sau
d | mn+1 | mn | m | n | a | b |
1 | 10 | 9 | 9 | 1 | 9 | 1 |
2 | 5 | 4 | 4 | 1 | 8 | 2 |
5 | 2 | 1 | bỏ | bỏ | bỏ | bỏ |
10 | 1 | 0 | bỏ | bỏ | bỏ | bỏ |
BẠN TỰ KẾT LUẬN NHÉ!
1+7+7 mũ 2+7 mũ 3......+7 mũ 100.Tính a,a là tổng dãy số trên