tính tổng sau
làm kiểu nhóm cặp nhé
S1=2+4+6+8+........+150
S2=\(5^2\)+\(5^3\)+\(5^4\)+........+\(5^{100}\)
S3 =7+10+13+.........+76
S4=\(\frac{5}{11.16}\)+\(\frac{5}{16.21}\)+...........+\(\frac{5}{61.66}\)
S5=49+64+81+........+169
giúp mình nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{5}{11.13}+\frac{5}{16.21}+...+\frac{5}{61.66}\)
\(\Rightarrow B=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\)
\(\Rightarrow B=\frac{1}{11}-\frac{1}{66}\)
\(\Rightarrow B=\frac{5}{66}\)
\(A=\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{61.66}\)
\(=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\)
\(=\frac{1}{11}-\frac{1}{66}\)
\(=\frac{5}{66}\)
Vậy \(A=\frac{5}{66}\)
\(A=\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{61.66}\)
\(=5.\left(\frac{1}{11.16}+\frac{1}{16.21}+...+\frac{1}{61.66}\right)\)
\(=5.\frac{1}{4}.\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{24}+...+\frac{1}{61}-\frac{1}{66}\right)\)
\(=\frac{5}{4}.\left(\frac{1}{11}-\frac{1}{66}\right)\)
\(=\frac{5}{4}.\frac{5}{66}\)
\(=\frac{25}{264}\)
a)
\(\Rightarrow A=\frac{\frac{1}{11}-\frac{1}{13}-\frac{1}{17}}{5\left(\frac{1}{11}-\frac{1}{13}-\frac{1}{17}\right)}+\frac{2\left(\frac{1}{3}-\frac{1}{9}-\frac{1}{27}+\frac{1}{81}\right)}{7\left(\frac{1}{3}-\frac{1}{9}-\frac{1}{27}+\frac{1}{81}\right)}\)
\(\Rightarrow A=\frac{1}{5}+\frac{2}{7}\)
\(\Rightarrow A=\frac{17}{35}\)
b)
\(\Rightarrow B=5\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+....+\frac{1}{56}-\frac{1}{61}\right)\)
\(\Rightarrow B=5\left(\frac{1}{11}-\frac{1}{61}\right)\)
\(\Rightarrow B=5.\frac{50}{671}=\frac{250}{671}\)
c)
\(\Rightarrow C=1-\left(\frac{1}{1.3}+\frac{1}{2.3}+\frac{1}{2.5}+....+\frac{1}{49.25}\right)\)
\(\Rightarrow C=1-2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{49.50}\right)\)
\(\Rightarrow C=1-2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}\right)\)
\(\Rightarrow C=1-1-\frac{1}{25}\)
\(\Rightarrow C=\frac{1}{25}\)
Câu 1:
Giả sử \(\frac{3}{5}< \frac{3+m}{5+m}\)
=) \(3.\left(5+m\right)< 5.\left(3+m\right)\)
=) \(15+3m< 15+5m\) ( Đúng vì \(15=15\)và \(3m< 5m\)) =) Điều giả sử đúng
=) \(\frac{3}{5}< \frac{3+m}{5+m}\)
* Từ điều trên ta suy ra : Nếu \(\frac{a}{b}< 1\)=) \(\frac{a}{b}< \frac{a+m}{b+m}\)
Và nếu \(\frac{a}{b}>1\)=) \(\frac{a}{b}>\frac{a+m}{b+m}\)
Câu 2 :
= \(5.\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{26.31}\right)\)
= \(5.\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)\)
= \(5.\left(\frac{1}{1}-\frac{1}{31}\right)\)= \(5.\frac{30}{31}=\frac{150}{31}\)
=> Với mọi số tự nhiên m ( như m\(\ne\)0 ) thì \(\frac{3}{5}< \frac{3+m}{5+m}\)
\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}\)
\(=5\left(\frac{1}{1.6}+\frac{1}{6.11}+...+\frac{1}{26.31}\right)\)
\(=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)\)
\(=5\left(1-\frac{1}{31}\right)\)
\(=5.\frac{30}{31}\)
\(=\frac{150}{31}\)
Đặt \(A=\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}\)
\(\Rightarrow A=\frac{5^2}{5}\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+\frac{1}{26}-\frac{1}{31}\right)\)
\(\Rightarrow A=5.\left(1-\frac{1}{31}\right)=5.\frac{30}{31}=\frac{150}{31}\)
a) \(A=\frac{\frac{1}{11}-\frac{1}{13}-\frac{1}{17}}{\frac{5}{11}-\frac{5}{13}-\frac{5}{17}}+\frac{\frac{2}{3}-\frac{2}{9}-\frac{2}{27}+\frac{2}{81}}{\frac{7}{3}-\frac{7}{9}-\frac{7}{27}+\frac{7}{81}}\)
\(=\frac{\frac{1}{11}-\frac{1}{13}-\frac{1}{17}}{5\left(\frac{1}{11}-\frac{1}{13}-\frac{1}{17}\right)}+\frac{2\left(\frac{1}{3}-\frac{1}{9}-\frac{1}{27}+\frac{1}{81}\right)}{7\left(\frac{1}{3}-\frac{1}{9}-\frac{1}{27}+\frac{1}{81}\right)}\)
\(=\frac{1}{5}+\frac{2}{7}\)
\(=\frac{7}{35}+\frac{10}{35}\)
\(=\frac{17}{35}\)
Vậy \(A=\frac{17}{35}\)
b) \(B=\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}+...+\frac{5^2}{56.61}\)
\(=5.\left(\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{56.61}\right)\)
\(=5.\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{56}-\frac{1}{61}\right)\)
\(=5.\left(\frac{1}{11}-\frac{1}{61}\right)\)
\(=5.\left(\frac{61}{671}-\frac{11}{671}\right)\)
\(=5.\frac{50}{671}\)
\(=\frac{250}{671}\)
Vậy \(B=\frac{250}{671}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
a, \(A=\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{61.66}\)
\(A=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{61}-\frac{1}{66}\)
\(A=\frac{1}{11}-\frac{1}{66}\)
\(A=\frac{5}{66}\)
b, \(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
\(B=1-\frac{1}{7}\)
\(B=\frac{6}{7}\)
_Học tốt nha_
Bài tập 1:
S=2/15+2/35+2/63+2/99+2/143
\(\Rightarrow\)S=2/3x5 +2/5x 7 +2/7x9 +2/9x11 +2/11x13
\(\Rightarrow\)S=1/3 -1/5 +1/5 - 1/7 +1/7 -1/9 +1/9 -1/11 +1/11 -1/13
\(\Rightarrow\)S=1/3 -1/13
\(\Rightarrow\)S=13/39 -3/39
\(\Rightarrow\)S=10/39
S=3/1.4 +3/4.7+3/7.11 ..........sai đề rồi
Bài 2
A=5/11.16+5/16.21+5/21.26+...+5/61.66
\(\Rightarrow\)A=1/11+1/16+1/16-1/21+1/21-1/26+....+1/61-1/66
\(\Rightarrow\)A=1/11-1/66
\(\Rightarrow\)A=6/66-1/66
\(\Rightarrow\)A=5/66
\(S1=2+4+6+...+150=\frac{2+150}{2}\cdot\left(\frac{150-2}{2}+1\right)\)
\(S1=\frac{152}{2}\cdot\left(\frac{148}{2}+1\right)=76\cdot\frac{150}{2}=76\cdot75=5700\)
- S3 và S5 tương tự nha bạn :vv
\(S2=5^2+5^3+5^4+...+5^{100}\)
\(\Rightarrow5S2=5^3+5^4+5^5+...+5^{100}+5^{101}\)
\(S2=5^2+5^3+5^4+5^5+...+5^{100}\)
\(\Rightarrow5S2-S2=4S2=5^{101}-5^2\Rightarrow S2=\frac{5^{101}-5^2}{4}\)
\(S4=\frac{5}{11\cdot16}+\frac{5}{16\cdot21}+...+\frac{5}{61\cdot66}\)
\(\Rightarrow S4=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\)
\(\Rightarrow S4=\frac{1}{11}-\frac{1}{16}=\frac{16}{176}-\frac{11}{176}=\frac{5}{176}\)