Tìm GTNN của biểu thức:
\(P=\left|x-1\right|+\sqrt{x-2019}+\left|x-2020\right|\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left(x-1\right)^2\ge0\)
\(\left|y-5\right|\ge0\)
\(\sqrt{z-4}\ge0\)
Để có được \(Min_A\Leftrightarrow\hept{\begin{cases}x-1=0\\y-5=0\\z-4=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=5\\z=4\end{cases}}\)
\(\Leftrightarrow A=1^2+0+0+0+2020=2021\)
Vậy \(Min_A=2021\Leftrightarrow\left(x;y;z\right)=\left(1;5;4\right)\)
\(A=\left|x-2019\right|+\left|x-2020\right|\)
\(=\left|x+\left(-2019\right)\right|+\left|2020-x\right|\)
Ta có :
\(\left\{{}\begin{matrix}\left|x+\left(-2019\right)\right|\ge x+\left(-2019\right)\\\left|2020-x\right|\ge2020-x\end{matrix}\right.\)\(=>A\ge x+\left(-2019\right)+2020-x\)
=>\(A\ge1\)
Dấu "=" xảy ra khi
\(\left\{{}\begin{matrix}x+\left(-2019\right)\ge0\\2020-x\ge0\end{matrix}\right.\)\(=>2019\le x\le2020\)
Vậy GTNN của A=1
Khi \(2019\le x\le2020\)
\(A=\left|x-2019\right|+\left|x-2020\right|\)
\(A=\left|2019-x\right|+\left|x-2020\right|\ge\left|2019-x+x-2020\right|=\left|-1\right|=1\)
\(\Rightarrow A\ge1\)
Dấu '' = '' xảy ra
\(\)\(\Leftrightarrow\left\{{}\begin{matrix}2019-x\ge0\\x-2020\ge0\end{matrix}\right.\)
\(\Leftrightarrow2019\le x\le2020\)
Vậy Min A = 1 \(\Leftrightarrow2019\le x\le2020\)
Tìm giá trị nhỏ nhất của biểu thức:
\(A=\left|x-2019\right|+\left|x-2020\right|+\left|x-2021\right|\)
Lời giải:
Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:
$|x-2019|+|x-2021|=|x-2019|+|2021-x|\geq |x-2019+2021-x|=2$
$|x-2020|\geq 0$ với mọi $x$
$\Rightarrow A=|x-2019|+|x-2020|+|x-2021|\geq 2+0=2$
Vậy $A_{\min}=2$
Giá trị này đạt được khi: $(x-2019)(2021-x)\geq 0$ và $x-2020=0$
Tức là $x=2020$
\(A=\left(\left|x-1\right|+\left|2020-x\right|\right)+\left(\left|x-2\right|+\left|2019-x\right|\right)+...+\left(\left|x-1009\right|+\left|1010-x\right|\right)\\ A\ge\left|x-1+2020-x\right|+\left|x-2+2019-x\right|+...+\left|x-1009+1010-x\right|\\ A\ge2019+2017+...+1=\dfrac{2020\left[\left(2019-1\right):2+1\right]}{2}=1020100\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(2020-x\right)\ge0\\...\\\left(x-1009\right)\left(1010-x\right)\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1\le x\le2020\\...\\1009\le x\le1010\end{matrix}\right.\)
\(\Leftrightarrow1009\le x\le1010\)
Lời giải:
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$A=|x-2019|+|x-2020|=|x-2019|+|2020-x|\geq |x-2019+2020-x|=1$
Vậy $A_{\min}=1$. Giá trị này đạt tại $(x-2019)(2020-x)\geq 0$
$\Leftrightarrow 2019\leq x\leq 2020$
F = | 2x - 2 | + | 2x - 2003 |
F = | 2x - 2 | + | -( 2x - 2003 ) |
F = | 2x - 2 | + | 2003 - 2x |
Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :
F = | 2x - 2 | + | 2003 - 2x | ≥ | 2x - 2 + 2003 - 2x | = | 2001 | = 2001
Đẳng thức xảy ra khi ab ≥ 0
=> ( 2x - 2 )( 2003 - 2x ) ≥ 0
Xét hai trường hợp :
1/ \(\hept{\begin{cases}2x-2\ge0\\2003-2x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}2x\ge2\\-2x\ge-2003\end{cases}}\Rightarrow\hept{\begin{cases}x\ge1\\x\le\frac{2003}{2}\end{cases}\Rightarrow}1\le x\le\frac{2003}{2}\)
2/ \(\hept{\begin{cases}2x-2\le0\\2003-2x\le0\end{cases}}\Rightarrow\hept{\begin{cases}2x\le2\\-2x\le-2003\end{cases}}\Rightarrow\hept{\begin{cases}x\le1\\x\ge\frac{2003}{2}\end{cases}}\)( loại )
Vậy MinF = 2001 <=> \(1\le x\le\frac{2003}{2}\)
G = | 2x - 3 | + 1/2| 4x - 1 |
G = | 2x - 3 | + | 2x - 1/2 |
G = | -( 2x - 3 ) | + | 2x - 1/2 |
G = | 3 - 2x | + | 2x - 1/2 |
Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :
G = | 3 - 2x | + | 2x - 1/2 | ≥ | 3 - 2x + 2x - 1/2 | = | 5/2 | = 5/2
Đẳng thức xảy ra khi ab ≥ 0
=> ( 3 - 2x )( 2x - 1/2 ) ≥ 0
Xét 2 trường hợp :
1/ \(\hept{\begin{cases}3-2x\ge0\\2x-\frac{1}{2}\ge0\end{cases}}\Rightarrow\hept{\begin{cases}-2x\ge-3\\2x\ge\frac{1}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x\le\frac{3}{2}\\x\ge\frac{1}{4}\end{cases}}\Rightarrow\frac{1}{4}\le x\le\frac{3}{2}\)
2/ \(\hept{\begin{cases}3-2x\le0\\2x-\frac{1}{2}\le0\end{cases}}\Rightarrow\hept{\begin{cases}-2x\le-3\\2x\le\frac{1}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x\ge\frac{3}{2}\\x\le\frac{1}{4}\end{cases}}\)( loại )
=> MinG = 5/2 <=> \(\frac{1}{4}\le x\le\frac{3}{2}\)
H = | x - 2018 | + | x - 2019 | + | x - 2020 |
H = | x - 2019 | + [ | x - 2018 | + | x - 2020 | ]
H = | x - 2019 | + [ x - 2018 | + | -( x - 2020 ) | ]
H = | x - 2019 | + [ | x - 2018 | + | 2020 - x | ]
Ta có : | x - 2019 | ≥ 0 ∀ x
| x - 2018 | + | 2020 - x | ≥ | x - 2018 + 2020 - x | = | 2 | = 2 ( BĐT | a | + | b | ≥ | a + b | )
=> | x - 2019 | + [ | x - 2018 | + | 2020 - x | ] ≥ 2
Đẳng thức xảy ra <=> \(\hept{\begin{cases}\left|x-2019\right|=0\\\left(x-2018\right)\left(2020-x\right)\ge0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2019\\2018\le x\le2020\end{cases}}\)
=> x = 2019
=> MinH = 2 <=> x = 2019
\(x=\dfrac{1}{\sqrt{2}}\left(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\right)\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\right)=\sqrt{6}\)
\(y=\sqrt{\left(\sqrt{6}-1\right)^2}=\sqrt{6}-1\)
\(\Rightarrow x-y=1\Rightarrow P=1\)
\(B=x-2020-\sqrt{x-2020}+\dfrac{1}{4}+\dfrac{8079}{4}\)
\(B=\left(\sqrt{x-2020}-\dfrac{1}{2}\right)^2+\dfrac{8079}{4}\ge\dfrac{8079}{4}\)
\(B_{min}=\dfrac{8079}{4}\) khi \(x=\dfrac{8081}{4}\)
ĐKXĐ: \(x\ge2019\)
\(P=\left|x-1\right|+\left|2020-x\right|+\sqrt{x-2019}\)
\(P\ge\left|x-1+2020-x\right|+\sqrt{x-2019}=2019+\sqrt{x-2019}\ge2019\)
\(\Rightarrow P_{min}=2019\) khi \(\left\{{}\begin{matrix}x-1\ge0\\2020-x\ge0\\\sqrt{x-2019}=0\end{matrix}\right.\) \(\Rightarrow x=2019\)