Cho a, b, c là các số không âm thỏa mãn: a + b + c=1
Tìm Max của P= a( b2 + c2) + b(a2 + c2) + c(a2 + b2).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
P = a + b + c ≤ a + b + a + b = 2(a + b) ≤ 2(-1) = -2
Ta cũng có:
P = a + b + c ≤ a + b + c - 2abc ≥ a + b + c - 2(-1)(-1)(-1) = -3
Vậy GTNN của P = -3 và GTLN của P = -2.
\(\)Ta có: \(a+b+c=0 \Rightarrow b+c=-a \Rightarrow (b+c)^2=(-a)^2 \Leftrightarrow b^2+c^2+2bc=a^2 \Leftrightarrow a^2-b^2-c^2=2bc\)
Tương tự: \(b^2-c^2-a^2=2ca;c^2-a^2-b^2=2ab\)
\(P=...=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ca}+\dfrac{c^2}{2bc}=\dfrac{a^3+b^3+c^3}{2abc}=\dfrac{3abc}{2abc}=\dfrac{3}{2}\)
----
Bổ đề \(a+b+c=0 \Leftrightarrow a^3+b^3+c^3\)
Ở đây ta c/m chiều thuận:
Với \(a+b+c=0 \Leftrightarrow a+b=-c \Rightarrow (a+b)^3=(-c)^3 \Leftrightarrow a^3+b^3+3ab(a+b)=-c^3 \Leftrightarrow a^3+b^3+c^3=3abc(QED)\)
Lời giải:
Do $b\leq c; a^2\geq 0$ nên $a^2(b-c)\leq 0$
$\Rightarrow Q\leq b^2(c-b)+c^2(1-c)$
Áp dụng BĐT AM-GM:
\(b^2(c-b)=4.\frac{b}{2}.\frac{b}{2}(c-b)\leq 4\left(\frac{\frac{b}{2}+\frac{b}{2}+c-b}{3}\right)^3=\frac{4}{27}c^3\)
\(\Rightarrow Q\leq c^2-\frac{23}{27}c^3=c^2(1-\frac{23}{27}c)=(\frac{54}{23})^2.\frac{23}{54}c.\frac{23}{54}c(1-\frac{23}{27}c)\leq (\frac{54}{23})^2\left(\frac{\frac{23}{54}c+\frac{23}{54}c+1-\frac{23}{27}c}{3}\right)^3=\frac{108}{529}\)
Vậy $Q_{max}=\frac{108}{529}$
Giá trị này đạt tại $(a,b,c)=(0,\frac{12}{23}, \frac{18}{23})$
Lời giải:
Do $b\leq c; a^2\geq 0$ nên $a^2(b-c)\leq 0$
$\Rightarrow Q\leq b^2(c-b)+c^2(1-c)$
Áp dụng BĐT AM-GM:
\(b^2(c-b)=4.\frac{b}{2}.\frac{b}{2}(c-b)\leq 4\left(\frac{\frac{b}{2}+\frac{b}{2}+c-b}{3}\right)^3=\frac{4}{27}c^3\)
\(\Rightarrow Q\leq c^2-\frac{23}{27}c^3=c^2(1-\frac{23}{27}c)=(\frac{54}{23})^2.\frac{23}{54}c.\frac{23}{54}c(1-\frac{23}{27}c)\leq (\frac{54}{23})^2\left(\frac{\frac{23}{54}c+\frac{23}{54}c+1-\frac{23}{27}c}{3}\right)^3=\frac{108}{529}\)
Vậy $Q_{max}=\frac{108}{529}$
Giá trị này đạt tại $(a,b,c)=(0,\frac{12}{23}, \frac{18}{23})$
Đặt \(P=\dfrac{a^3}{a^2+b^2+ab}+\dfrac{b^3}{b^2+c^2+bc}+\dfrac{c^3}{c^2+a^2+ca}\)
Ta có: \(\dfrac{a^3}{a^2+b^2+ab}=a-\dfrac{ab\left(a+b\right)}{a^2+b^2+ab}\ge a-\dfrac{ab\left(a+b\right)}{3\sqrt[3]{a^3b^3}}=a-\dfrac{a+b}{3}=\dfrac{2a-b}{3}\)
Tương tự: \(\dfrac{b^3}{b^2+c^2+bc}\ge\dfrac{2b-c}{3}\) ; \(\dfrac{c^3}{c^2+a^2+ca}\ge\dfrac{2c-a}{3}\)
Cộng vế:
\(P\ge\dfrac{a+b+c}{3}=673\)
Dấu "=" xảy ra khi \(a=b=c=673\)
Lời giải:
Áp dụng BĐT Cô-si:
$\frac{a^2}{2}+8b^2\geq 2\sqrt{\frac{a^2}{2}.8b^2}=4ab$
$\frac{a^2}{2}+8c^2\geq 2\sqrt{\frac{a^2}{2}.8c^2}=4ac$
$2(b^2+c^2)\geq 2.2\sqrt{b^2c^2}=4bc$
Cộng các BĐT trên theo vế và thu gọn ta được:
$a^2+10(b^2+c^2)\geq 4(ab+bc+ac)=4$
Ta có đpcm.
Cách 3: (rất gọn gàng)
Giả sử \(c=min\left\{a,b,c\right\}\).Trước hết chứng minh: \(4P\le\left(a+b+c\right)^3-3abc\)
Có: \(VP-VT=c\left(\Sigma_{cyc}a^2-\Sigma_{cyc}ab\right)+\left(a-b\right)^2\left(a+b-2c\right)\ge0\)
Vì vậy: \(4P\le\left(a+b+c\right)^3-3abc\le\left(a+b+c\right)^3=1\Rightarrow P\le\frac{1}{4}\)
Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(\frac{1}{2};\frac{1}{2};0\right)\) và các hoán vị.
P/s: Làm thử, ko chắc, em cũng chưa kiểm tra lại lời giải đâu.
Từ đề bài có \(P=ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)=f\left(a;b;c\right)\)
Xét hiệu:
\(f\left(a;b;c\right)-f\left(t;t;c\right)=ab\left(a+b\right)-t^2.\left(2t\right)+bc\left(b+c\right)+ca\left(c+a\right)-2tc\left(t+c\right)\) với \(t=\frac{a+b}{2}\)
Lại có \(b\left(b+c\right)+a\left(c+a\right)-2t\left(t+c\right)\)
\(=b^2+bc+a^2+ca-\left(a+b\right)\left(\frac{a+b}{2}+c\right)\)
\(=\frac{\left(a-b\right)^2}{2}\) nên :
\(f\left(a;b;c\right)-f\left(t;t;c\right)=\frac{c\left(a-b\right)^2}{2}-\left(t^2-ab\right)\left(a+b\right)\)
\(=\frac{2c\left(a-b\right)^2}{4}-\frac{\left(a+b\right)\left(a-b\right)^2}{4}\)
\(=\frac{\left(a-b\right)^2}{4}\left(c-a+c-b\right)\). Không mất tính tổng quát, giả sử \(c=min\left\{a,b,c\right\}\).
Có ngay \(f\left(a;b;c\right)-f\left(t;t;c\right)\le0\) hay \(f\left(a;b;c\right)\le f\left(t;t;c\right)\).
Do đó ta sẽ tìm max của f(t;t;c) = \(2t^3+2tc\left(t+c\right)\). Mặt khác từ đề bài suy ra \(c=1-2t\) mà c> 0 và t > 0do đó \(0\le t\le\frac{1}{2}\)
Do đo \(f\left(t;t;c\right)=2t^3+2t\left(1-2t\right)\left(1-t\right)=6t^3-6t^2+2t\)
Bây giờ xét hiệu \(f\left(t;t;c\right)-\frac{1}{4}=\left(t-\frac{1}{2}\right)\left(6t^2-3t+\frac{1}{2}\right)\le0\forall\)\(0\le t\le\frac{1}{2}\)
Do đó \(f\left(t;t;c\right)\le\frac{1}{4}\).Đẳng thức xảy ra khi \(t=\frac{1}{2}\Rightarrow a=b=\frac{1}{2}\Rightarrow c=0\)
Vậy....
P/s: Em ko chắc vì hoàn toàn chưa kiểm tra lại.