a,chứng tỏ rằng với \(\forall\) a,b\(\ge\)0 thì:
(ax+by)(bx+ay)\(\ge\)(a+b)\(^2\)xy
b, với x,y,z >0 chứng mình rằng (x+y+z)(\(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\))\(\ge\)9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 : đã cm bên kia
Bài 1: :|
we had điều này:
\(2=\frac{2014}{x}+\frac{2014}{y}+\frac{2014}{z}\)
\(\Leftrightarrow\frac{x-2014}{x}+\frac{y-2014}{y}+\frac{z-204}{z}=1\)
Xòng! bunyakovsky
P/s : Bệnh lười kinh niên tái phát nên ít khi ol sorry :<
2a)với a,b,c là các số thực ta có
\(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{1}{4}\left(a+b\right)^2\)
\(\Rightarrow\sqrt{a^2-ab+b^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left|a+b\right|\)
tương tự \(\sqrt{b^2-bc+c^2}\ge\frac{1}{2}\left|b+c\right|\)
tương tự \(\sqrt{c^2-ca+a^2}\ge\frac{1}{2}\left|a+c\right|\)
cộng từng vế mỗi BĐT ta được \(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\ge\frac{2\left(a+b+c\right)}{2}=a+b+c\)
dấu "=" xảy ra khi và chỉ khi a=b=c
Mấy cái dấu "=" anh tự xét.
Áp dụng BĐT AM-GM: \(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=\frac{3}{\sqrt[3]{abc}}\ge\frac{3}{\frac{a+b+c}{3}}=\frac{9}{a+b+c}\)
a) Áp dụng: \(VT\ge\frac{\left(a+b+c\right)^2}{3}.\frac{9}{2\left(a+b+c\right)}=\frac{3}{2}\left(a+b+c\right)\)
b) \(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{x+y+z+3}=\frac{3}{4}\)
ngu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườichó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó ngu
1.
Áp dụng bất đẳng thức AM - GM cho 2 số dương ta có:
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b\)
tương tự, ta có:
\(\frac{bc}{a}+\frac{ac}{b}\ge2\sqrt{\frac{bc}{a}.\frac{ac}{b}}=2c\)
\(\frac{ab}{c}+\frac{ac}{b}\ge2\sqrt{\frac{ab}{c}.\frac{ac}{b}}=2a\)
Cộng theo vế của 3 BĐT trên, ta được:
\(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\right)\ge2\left(a+b+c\right)\)
\(\Rightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\) (ĐPCM)
ý b nghĩ đã ~.~
2.
P = \(\frac{x^2}{2-x}+\frac{y^2}{2-y}+\frac{z^2}{2-z}\)
Sau đó áp dụng bất đẳng thức AM - GM như trên nhé bạn!