Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt : \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+.....+\frac{1}{128}+\frac{1}{256}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{128}\)
\(\Rightarrow2A-A=1-\frac{1}{256}\)
\(\Rightarrow A=\frac{255}{256}\)
\(A=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+...+\frac{1}{9999}\)
\(A=\frac{1}{3\times5}+\frac{1}{5\times7}+\frac{1}{7\times9}+...+\frac{1}{99\times101}\)
\(A=\frac{1}{2}\times\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(A=\frac{1}{2}\times\left(\frac{1}{3}-\frac{1}{101}\right)\)
\(A=\frac{1}{2}\times\frac{98}{303}\)
\(A=\frac{49}{303}\)
A= \(\frac{1}{15}\)+ \(\frac{1}{35}\)+ ... + \(\frac{1}{9999}\)
A= \(\frac{1}{3.5}\)+ \(\frac{1}{5.7}\) + ... + \(\frac{1}{99.101}\)
2. A= \(\frac{2}{3.5}\) + \(\frac{2}{5.7}\) + ... + \(\frac{2}{99.101}\)
2.A = \(\frac{1}{3}\) - \(\frac{1}{5}\)+ \(\frac{1}{5}\)-\(\frac{1}{7}\) + ... + \(\frac{1}{99}\) - \(\frac{1}{101}\)
2.A= \(\frac{1}{3}\) - \(\frac{1}{101}\)
2.A= \(\frac{101}{303}\) - \(\frac{3}{303}\)
2.A= \(\frac{98}{303}\)
A = \(\frac{98}{303}\) : 2
A = \(\frac{49}{303}\)
Vay A=\(\frac{49}{303}\)
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)....\left(1-\frac{1}{100}\right)\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\cdot\cdot\cdot\frac{99}{100}\)
\(=\frac{1.2....99}{2.3....100}=\frac{1}{100}\)
A=(1-1/2)(1-1/3)(1-1/4)....(1-1/100)
A=1/2.2/3.3/4.....99/100
A=(1.2.3....99)/(2.3.4.....100)
A=1/100
\(\frac{4}{9}:\frac{5}{7}=\frac{4}{9}\times\frac{7}{5}=\frac{4\times7}{9\times5}=\frac{28}{45}\)
\(\frac{5}{7}:\frac{4}{9}=\frac{5}{7}\times\frac{9}{4}=\frac{5\times9}{7\times4}=\frac{45}{28}\)
\(\frac{1}{3}:\frac{1}{4}=\frac{1}{3}\times4=\frac{4}{3}\)
\(\frac{1}{4}:\frac{1}{3}=\frac{1}{4}\times3=\frac{3}{4}\)
Ta có \(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{998\times999}+\frac{1}{999\times1000}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{998}-\frac{1}{999}+\frac{1}{999}-\frac{1}{1000}\)
\(=1-\frac{1}{1000}\)
\(=\frac{999}{1000}\)
\(T=\left(\frac{1}{2}+1\right).\left(\frac{1}{3}+1\right)..........\left(\frac{1}{99}+1\right)\)
\(=\frac{3}{2}.\frac{4}{3}........\frac{100}{99}\)
\(=\frac{3.4...............100}{2.3..............99}\)
\(=\frac{50}{1}\)
\( S = 1-1/5 +1/5-1/9+1/9-1/13+1/13-1/17+1/17-1/21+1/21-1/25+1/25-1/29. \)
\(S= 1- 1/29 \)
\(S=\frac{28}{29}\)
Nếu mình ko nhầm!
bạn đùa tui ko trả lời
= 2 nha
-tt-