cho tam giác abc cân tại a . Qua a kẻ đường thẳng // bc là xy . Các tia pg của góc b và góc c cắt nhau tại e và f . cm
a) xy là đường pg goc ngoài tại điỉnh a
b) AE=AF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Do DE//BC
=> \(\widehat{A_1}=\widehat{ABC}\)( so le trong )
Vì \(\widehat{BAz}\)là góc ngoài tam giác ABC
=> \(\widehat{BAz}=\widehat{ABC}+\widehat{ACB}\)
\(\Rightarrow\widehat{A_1}+\widehat{A_2}=\widehat{ABC}+\widehat{ACB}\)
Do \(\widehat{A_1}=\widehat{ABC}\)( chứng minh trên )
\(\Rightarrow\widehat{A_2}=\widehat{ACB}\)
Mà góc ABC = góc ACB ( tam giác ABC cân ở A )
=> \(\widehat{A_1}=\widehat{A_2}\)
=> Ax là tia phân giác góc BAz
Hay Ax là phân giác góc ngoài đỉnh A của tam giác ABC
b, Vì \(\widehat{A_2}=\widehat{CAE}\)( 2 góc đối đỉnh)
Mà \(\widehat{A_2}=\widehat{A_1}\)(cmt)
\(\Rightarrow\widehat{A_1}=\widehat{CAE}\)
\(\Rightarrow\widehat{A_1}+\widehat{BAC}=\widehat{CAE}+\widehat{BAC}\)
\(\Rightarrow\widehat{DAC}=\widehat{EAB}\)
Vì góc ABC = góc ACB ( tam giác ABC cân )
=> \(\frac{1}{2}\widehat{ABC}=\frac{1}{2}\widehat{ACB}\Rightarrow\widehat{ABE}=\widehat{ACD}\)
Xét tam giác DAC và tam giác EAB có:
\(\widehat{ACD}=\widehat{ABE}\)( chứng minh trên )
AC = AB ( tam giác ABC cân )
\(\widehat{DAC}=\widehat{EAB}\)( chứng minh trên )
=> \(\Delta DAC=\Delta EAB\)( g-c-g )
=> DA = EA
a) Ta có: \(BC^2=10^2=100\)
\(AB^2+AC^2=6^2+8^2=100\)
Do đó: \(BC^2=AB^2+AC^2\)(=100)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
b) Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔBAD=ΔBED(cạnh huyền-góc nhọn)
Suy ra: DA=DE(Hai cạnh tương ứng)
Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE(Cmt)
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔADF=ΔEDC(Cạnh góc vuông-góc nhọn kề)
Suy ra: DF=DC(Hai cạnh tương ứng)
Xét ΔDFC có DF=DC(cmt)
nên ΔDFC cân tại D(Định nghĩa tam giác cân)
a: Xét ΔHDB vuông tại D và ΔHEC vuông tại E có
HB=HC
\(\widehat{B}=\widehat{C}\)
Do đó: ΔHDB=ΔHEC
b: Ta có: ΔHDB=ΔHEC
nên BD=EC
Ta có: AD+DB=AB
AE+EC=AC
mà BD=CE
và AB=AC
nên AD=AE
a) Tam giác ABC câm tại A => Tam giác ABC có đường phân giác cũng là đường cao (gọi đường cao là AH)
Có AH vuông góc với BC; xy // BC => AH vuông góc với xy => xy là phân giác ngoài tại đỉnh A
b) Gọi giao điểm 3 đường phân giác là K, ta có: K thuộc AH => KH vuông góc với xy
Tam giác ABC cân tại A => góc B = góc C => góc KBC = góc KCB
Có EF // BC => góc EFC = góc KCB và góc FEB = góc KBC
=> góc EFC = góc FEB => Tam giác KEF cân tại K => Tam giác KEF có đường trung tuyến cũng là đường cao (gọi đường cao KI)
=> AE = EF