chứng minh định lí: hai đg p/g ngoài và một đg p/g trong xuất phát từ 3 góc khác nhau của một t.giác thì đồng quy tại một điểm
mik cần gấp,mong mn giúp đỡ!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi I là giao của ∠ABC và ∠ACB, gọi D, F, E lần lượt là hình chiếu của I trên
AC, AB, BC
Xét ∆FBI và ∆EBI:
∠FBI=∠IBE(gt)
BI chung
∠BFI=∠IEB=900(gt) =>∆FBI = ∆EBI(g-c-g)
Do đó IF=IE(cạnh tương ứng)
Xét ∆FAI và ∆DAI:
∠FAI=∠IAD(gt)
AI chung
∠AFI=∠IDA=900(gt) =>∆FAI = ∆DAI(g-c-g)
Do đó IF=ID(cạnh tương ứng)
IF=ID;IF=IE =>ID=IE
Xét ∆ECI và ∆DCI:
∠IEC=∠IDC=900(gt)
ID=IE(CMT)
CI chung => ∆ECI = ∆DCI (cạnh huyền -cạnh góc vuông)
Do đó : ∠ECI=∠ICD
=>IC là phân giác góc BCA
Vậy ba đường phân giác trong CI, AI, BI đồng quy tại một diểm
Hình bạn tự vẽ nhé
a) Có xy // mn mà 2 góc yAB và ABn là 2 góc trong cùng phía
=> ^yAB + ^ABn = 180 độ Mà ^ABn = 50 độ
=> ^yAB = 130 độ
Vạy ^AB = 130 độ
b) Có BI là phân giác của ^ABn => ^ABI = 1/2 ^ABn = 50 độ / 2 = 25 độ
Có AI là phân giác của ^yAB => ^BAI = 1/2 ^yAB = 130 độ /2 = 65 độ
=> ^ABI + ^BAI = 90 độ mà ^ABI + ^BAI + ^AIB = 180 độ ( tổng 3 hóc trong 1 tam giác )
=> ^AIB = 90 độ => tam giác BIA vuông tại I (đpcm )
c) Có ^AIB = 90 độ => BI là đường cao tam giác ABC
Mà BI cũng là đường phân giác tam giác ABC
=> tam giác ABC cân tại B ( dâu hiệu nhận biết tam giác cân )
=> AB = BC ( tính chất ) ( đpcm)
Tích cho mk nhoa !!! ~~~
Gọi I là giao của ∠ABC và ∠ACB, gọi D, F, E lần lượt là hình chiếu của I trên
AC, AB, BC
Xét ∆FBI và ∆EBI:
∠FBI=∠IBE(gt)
BI chung
∠BFI=∠IEB=900(gt) =>∆FBI = ∆EBI(g-c-g)
Do đó IF=IE(cạnh tương ứng)
Xét ∆FAI và ∆DAI:
∠FAI=∠IAD(gt)
AI chung
∠AFI=∠IDA=900(gt) =>∆FAI = ∆DAI(g-c-g)
Do đó IF=ID(cạnh tương ứng)
IF=ID;IF=IE =>ID=IE
Xét ∆ECI và ∆DCI:
∠IEC=∠IDC=900(gt)
ID=IE(CMT)
CI chung => ∆ECI = ∆DCI (cạnh huyền -cạnh góc vuông)
Do đó : ∠ECI=∠ICD
=>IC là phân giác góc BCA
Vậy ba đường phân giác trong CI, AI, BI đồng quy tại một diểm