so sánh 2^2019 và 3^1346
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(x^{673}=a;y^{673}=b\Rightarrow a^3=b^3-b^2-b+2\)
\(+,b=0\Rightarrow a^3=-2\left(\text{vô lí}\right)\)
\(+,b=1\Rightarrow a=1\left(\text{thỏa mãn}\right)\)
\(+,b=-1\Rightarrow a^3=3\left(\text{vô lí vì a nguyên}\right)\)
\(+,b=-2\Rightarrow a^3=8\Leftrightarrow a=2\left(\text{loại vì x;y không nguyên}\right)\)
\(+,b\ne1;0;-1;-2\Rightarrow\left(b-1\right)^3< b^3-b^2-b+2< b^3\left(\text{nên loại}\right)\)
bạn tự kết luận
Ta có \(S=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+...+\frac{2018}{2^{2018}}+\frac{2019}{2^{2019}}\)
=> 2S = \(1+1+\frac{3}{2^2}+...+\frac{2018}{2^{2017}}+\frac{2019}{2^{2018}}\)
Khi đó 2S - S = \(\left(1+1+\frac{3}{2^2}+..+\frac{2018}{2^{2017}}+\frac{2019}{2^{2018}}\right)-\left(\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+...+\frac{2018}{2^{2018}}+\frac{2^{2019}}{2019}\right)\)
=> S = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2017}}+\frac{1}{2^{2018}}-\frac{2019}{2^{2019}}\)
Đặt P = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2017}}+\frac{1}{2^{2018}}\)
=> 2P = \(2+1+\frac{1}{2}+...+\frac{1}{2^{2016}}+\frac{1}{2^{2017}}\)
Khi đó 2P - P = \(\left(2+1+\frac{1}{2}+...+\frac{1}{2^{2016}}+\frac{1}{2^{2017}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2017}}+\frac{1}{2^{2018}}\right)\)
P = \(2-\frac{1}{2^{2018}}\)
Thay P vào S
=> S = \(2-\frac{1}{2^{2018}}-\frac{2019}{2^{2019}}=2-\frac{2}{2^{2019}}-\frac{2019}{2^{2019}}=2-\frac{2021}{2^{2019}}< 2\)
Vậy S < 2
Ta có: \(C=\dfrac{2019-2018}{2019+2018}\)
\(\Leftrightarrow C=\dfrac{\left(2019-2018\right)\left(2019+2018\right)}{\left(2019+2018\right)^2}\)
\(\Leftrightarrow C=\dfrac{2019^2-2018^2}{\left(2019+2018\right)^2}\)
Ta có: \(\left(2019+2018\right)^2=2019^2+2018^2+2\cdot2019\cdot2018\)
\(2019^2+2018^2=2019^2+2018^2+0\)
Do đó: \(\left(2019+2018\right)^2>2019^2+2018^2\)
\(\Leftrightarrow\dfrac{2019^2-2018^2}{\left(2019+2018\right)^2}< \dfrac{2019^2-2018^2}{2019^2+2018^2}\)
\(\Leftrightarrow C< D\)
\(A>\dfrac{2^{2018}}{2^{2018}+3^{2019}+5^{2020}}+\dfrac{3^{2019}}{2^{2018}+3^{2019}+5^{2020}}+\dfrac{5^{2020}}{5^{2020}+2^{2018}+3^{2019}}=1\)
\(B< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2019\cdot2020}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2019}-\dfrac{1}{2020}\)
=>B<1
=>A>B
Ta có
\(2^{2019}=\left(2^3\right)^{673}=8^{673}\)
\(3^{1346}=\left(3^2\right)^{673}=9^{673}\)
Vì \(8^{673}< 9^{673}\Rightarrow2^{2019}< 3^{1346}\)