cho tứ giác ABCD , gọi M,N lần lượt là trung điểm của các cạnh AD , BC . CMR MN ≤ AB+CD/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời
Vì \(\hept{\begin{cases}AM=MB\\DC=NC\\MN=\frac{BC+AD}{2}\end{cases}}\Rightarrow MN\) là đường trung bình của hình thang
\(\Rightarrow ABCD\)là hình thang ( đpcm )
Thông cảm nha mọi người
tôi sẽ vẽ lại hình cho nha
Study well
Gọi P là trung điểm của BD. Sử dụng tính chất đường trung bình của tam giác, ta có:
\(MP=\frac{1}{2}AB\)
\(NP=\frac{1}{2}CD\)
do đó: MP + NP = \(\frac{1}{2}\) (AB + CD)
mặt khác: MN \(\le\) MP + NP
vì vậy MN \(\le\) \(\frac{\left(AB+CD\right)}{2}\)
ko bít đúng ko !!! 5654667565689857954524246464363464564545756567568534
Ta có : Tứ giác MPNQ là hình bình hành
MN và PQ cắt nhau tại trung điểm I của mỗi đường
Ta có : Tứ giác EPFQ là hình bình hành
EF đi qua I
Vậy EF , MN và PQ đồng quy
Trên tia đối của PB lấy H sao cho BP = PH
ΔBPC và ΔHPD có:
BP = HP (cách vẽ)
\(\widehat{BPC}=\widehat{HPD}\left(đối.đỉnh\right)\) (đối đỉnh)
PC = PD (gt)
Do đó, ΔBPC=ΔHPD(c.g.c)
=> BC = DH (2 cạnh t/ứng)
và \(\widehat{PBC}=\widehat{PHD}\) (2 góc t/ứ), mà 2 góc này ở vị trí so le trong nên BC // HD
ΔABH có: M là trung điểm của AB (gt)
P là trung điểm của BH (vì HP = BP)
Do đó MP là đường trung bình của ΔABH
\(\Rightarrow MP=\dfrac{1}{2}AH\) ; MP // AH
\(\Rightarrow2MP=AH\)
Có: \(AD+DH\ge AH\) (quan hệ giữa 3 điểm bất kì)
\(\Leftrightarrow AD+BC\ge2MP\) (thay \(DH=BC;AH=2MP\))
\(\Leftrightarrow\dfrac{AD+BC}{2}\ge MP\)
Mà theo đề bài: \(MP=\dfrac{BC+AD}{2}\)
Do đó, \(AD+DH=AH\)
=> A,D,H thẳng hàng
Mà HD // BC (cmt) nên AD // BC
Tương tự: AB // CD
Tứ giác ABCD có: AD // BC (cmt);AB // CD (cmt)
Do đó, ABCD là hình bình hành
Gọi K là trung điểm BD
Xét tam giác ABD có:
Mlà trung điểm AD
K là trung điểm BD
=> MK là đường trung bình
\(\Rightarrow MK=\dfrac{1}{2}AB\left(1\right)\)
Xét tam giác BDC có:
K là trung điểm BD
N là trung điểm BC
=> NK là đường trung bình
\(\Rightarrow NK=\dfrac{1}{2}DC\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow MK+NK=\dfrac{1}{2}\left(BC+DC\right)\)
Mà \(MK+NK\ge MN\)(bất đẳng thức trong tam giác KMN)
\(\Rightarrow MN\le\dfrac{AB+DC}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow MK+NK=MN\)
\(\Leftrightarrow\) K là trung điểm MN