Cho tam giác ABC cân tại A, góc B =36°
A) tính góc A
B) tia phân giác của Góc B cắt AC tại D. Gọi E là hình chiếu của B trên AC, F là hình chiếu A trên BD. C/m tâm giác ABE = tam giác ABC
C)C\m BD>EC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn vẽ hình ra hộ mình dc ko
Mình vẽ hình thì cảm thấy sai sai
a) Vì tam giác ABC cân tại A ==> \(\widehat{ABC}\)=\(\widehat{ACB}\)= 36 độ
Xét tam giác ABC có: \(\widehat{ABC}\)+\(\widehat{ACB}\)+\(\widehat{BAC}\)= 180 độ (tổng 3 góc của 1 tam giác)
\(\widehat{BAC}\)= 180 độ - (\(\widehat{ABC}\)+\(\widehat{ACB}\))
\(\widehat{BAC}\)= 180 độ - ( 36 độ + 36 độ)
\(\widehat{BAC}\)= 108 độ
b, Xét tam giác ABE và tam giác ABF có:
\(\widehat{AEB}\)=\(\widehat{AFB}\)= 90 độ
AB là cạnh chung
\(\widehat{ABE}\)chung
Vậy tam giác ABE = tam giác ABF (ch.gn)
Hình = tự vẽ .-.
a) ∠BAC = ?
Vì ΔABC cân tại A nên:
∠BAC = 180° - 2∠ABC = 180° - 2. 36° = 180° - 72° = 108°
b) ΔABE = ΔABF
Xét ΔBCE vuông tại E:
∠EBC + ∠ECB = 90° ⇒ ∠EBC = 90° - 36° = 54°
⇒ ∠EBA + ∠ABC = ∠EBC = 54° ⇒ ∠EBA = 54° - ∠ABC = 54° - 36° = 18° (1)
Vì BD là phân giác của ∠ABC nên:
∠ABD = ∠CBD = ∠ABC : 2 = 36° : 2 = 18° (2)
Từ (1) và (2) suy ra: ∠EBA = ∠ABD (=18°)
Xét hai tam giác vuông ABE và ABF có:
AB: cạnh chung
∠EBA = ∠ABD (cmt)
Do đó: ΔEBA = ΔABF (cạnh huyền - góc nhọn)
a) Xét ΔABD vuông tại A và ΔIBD vuông tại I có
BD chung
\(\widehat{ABD}=\widehat{IBD}\)(BD là tia phân giác của \(\widehat{ABI}\))
Do đó: ΔABD=ΔIBD(cạnh huyền-góc nhọn)
Suy ra: DA=DI(hai cạnh tương ứng)
mà DI<DC(ΔDIC vuông tại I)
nên DA<DC
a) Xét ΔABD vuông tại A và ΔIBD vuông tại I có
BD chung
\(\widehat{ABD}=\widehat{IBD}\)(BD là tia phân giác của \(\widehat{ABI}\))
Do đó: ΔABD=ΔIBD(Cạnh huyền-góc nhọn)
Suy ra: DA=DI(hai cạnh tương ứng)
mà DI<DC
nên DA<DC