K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2019

Hình như sai đề :) T sửa lại nhé

\(B=\frac{1}{12}+\frac{1}{13}+...+\frac{1}{22}>\frac{1}{2}\)

B có 11 số hạng

Ta có: \(\frac{1}{12}>\frac{1}{22}\)

           \(\frac{1}{13}>\frac{1}{22}\)

               ............

             \(\frac{1}{22}=\frac{1}{22}\)

\(\Rightarrow B>\left(\frac{1}{22}+\frac{1}{22}+...+\frac{1}{22}\right)=\frac{11}{22}=\frac{1}{2}\)

30 tháng 3 2019

\(D=\frac{1}{5}+\frac{1}{6}+...+\frac{1}{17}< 2\)

Ta có: \(\frac{1}{5}=\frac{1}{5};\frac{1}{6}< \frac{1}{5};...;\frac{1}{10}< \frac{1}{5}\)

\(\Rightarrow\frac{1}{5}+\frac{1}{6}+...+\frac{1}{10}< (\frac{1}{5}+\frac{1}{5}+...+\frac{1}{5})=\frac{6}{5}\)(1)

Lại có: \(\frac{1}{11}=\frac{1}{11};\frac{1}{12}< \frac{1}{11};\frac{1}{13}< \frac{1}{11};...;\frac{1}{17}< \frac{1}{11}\)

\(\Rightarrow\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{17}< (\frac{1}{11}+\frac{1}{11}+\frac{1}{11}+...+\frac{1}{11})=\frac{7}{11}\)(2)

Từ (1), (2) \(\Rightarrow D< \frac{6}{5}+\frac{7}{11}=\frac{101}{55}< \frac{110}{55}=2\) 

P/s: Hoq chắc :<

28 tháng 3 2018

a,1/51 > 1/100

  1/52 > 1/100

   1/53 > 1/100

    ...

     1/100=1/100

=>H>1/100 + 1/100 + 1/100 +...+1/100

    H>50/100=1/2   

          1/51<1/50

         1/52<1/50

           ....

           1/100<1/50

=>H<1/50+1/50+...+1/50

     H<50/50=1

 Vay1/2<H<1

27 tháng 7 2023

có đúng ko

 

26 tháng 7 2019

Lời giải:

a, Ta có: \(A=\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+...+\frac{1}{22}>\frac{1}{22}+\frac{1}{22}+\frac{1}{22}+\frac{1}{22}+...+\frac{1}{22}=\frac{1}{22}.11=\frac{11}{22}=\frac{1}{2}\)

Vậy: \(A>\frac{1}{2}\)

b, Ta có: \(B=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{99}+\frac{1}{100}\)

\(=\left(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{49}+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\right)\)

Mà: \(\left(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{49}+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\right)\text{​​}\text{​​}\text{​​}>\left(\frac{1}{50}+...+\frac{1}{50}+\frac{1}{50}\right)+\left(\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\right)\)

=> \(B\text{​​}\text{​​}\text{​​}>\frac{1}{50}.41+\frac{1}{100}.50=\frac{41+25}{50}=\frac{33}{25}>1\)

Vậy: \(B>1\)

c, Ta có: \(C=\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{16}+\frac{1}{17}< \frac{1}{5}+\frac{1}{6}+\left(\frac{1}{7}+...+\frac{1}{7}+\frac{1}{7}\right)=\frac{11}{30}+11.\frac{1}{7}=\frac{407}{210}< \frac{420}{210}=2\)

Vậy: \(C< 2\)

hahaChúc bạn học tốt!hihaTick cho mình nhé!eoeo

28 tháng 6 2016

\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{7.8}.\)

\(B< \frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{8-7}{7.8}\)

\(B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}\)

\(B< 1-\frac{1}{8}< 1\)

1)\(\frac{252}{x}=\frac{84}{97}\Rightarrow\)\(\frac{84}{97}=\frac{252}{291}\Rightarrow x=291\)

6) \(\frac{y}{15}=\frac{2}{5}\Rightarrow\frac{2}{5}=\frac{6}{15}\Rightarrow x=6\)