Cho a,b,c >0 và \(\frac{b-20a+16c}{4a}=\frac{c-20b+16a}{4b}=\frac{a-20c+16b}{4c}\)
Tính giá trị \(F=\left(4+\frac{a}{4b}\right).\left(4+\frac{b}{4c}\right).\left(4+\frac{c}{4a}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cộng vế với vế giả thiết:
\(a^2+4b+4+b^2+4c+4+c^2+4a+4=0\)
\(\Leftrightarrow\left(a^2+4a+4\right)+\left(b^2+4b+4\right)+\left(c^2+4c+4\right)=0\)
\(\Leftrightarrow\left(a+2\right)^2+\left(b+2\right)^2+\left(c+2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+2=0\\b+2=0\\c+2=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c=-2\)
\(\Rightarrow P=1+1+1=3\)
Gọi A là vế trái của BĐT cần chứng minh. Không mất tính tổng quát, ta giả sử a + b + c = 3. Áp dụng BĐT AM - GM ta có:
\(\sqrt{\frac{\left(a+b\right)^3}{8ab\left(4a+4b+c\right)}}+\sqrt{\frac{\left(a+b\right)^3}{8bc\left(4a+4b+c\right)}}+\frac{ab\left(4a+4b+c\right)}{27}\)\(\ge\frac{1}{2}\left(a+b\right)\)
Suy ra
\(\sqrt{\frac{\left(a+b\right)^3}{8ab\left(4a+4b+c\right)}}\)\(+\frac{ab\left(4a+4b+c\right)}{54}\ge\frac{1}{4}\left(a+b\right)\)
Tương tự
\(\sqrt{\frac{\left(b+c\right)^3}{8bc\left(4b+4c+a\right)}}+\frac{bc\left(4b+4c+a\right)}{54}\ge\frac{1}{4}\left(b+c\right)\)
và \(\sqrt{\frac{\left(c+a\right)^3}{8ca\left(4c+4a+b\right)}}+\frac{ca\left(4c+4a+b\right)}{54}\ge\frac{1}{4}\left(c+a\right)\)
Cộng ba BĐT trên ta có:
\(\frac{1}{2\sqrt{2}}A\ge B\)
Với \(A=\frac{1}{54}[ab\left(4a+4b+c\right)+bc\left(4b+4c+a\right)\)
\(+ca\left(4c+4a+b\right)]\)
\(=\frac{1}{54}\left[4ab\left(a+b\right)+4bc\left(b+c\right)+4ca\left(c+a\right)+3abc\right]\)
\(=\frac{1}{54}\left[4\left(a+b+c\right)\left(ab+bc+ca\right)-9abc\right]\)
\(\le\frac{1}{54}\left(a+b+c\right)^3=\frac{1}{2}\)
và \(B=\frac{1}{4}.2\left(a+b+c\right)=\frac{3}{2}\)
Suy ra \(\frac{1}{2\sqrt{2}}A\ge\frac{3}{2}-\frac{1}{2}=1\Rightarrow A\ge2\sqrt{2}\)
Vậy
\(\sqrt{\frac{\left(a+b\right)^3}{ab\left(4a+4b+c\right)}}+\sqrt{\frac{\left(a+b\right)^3}{bc\left(4a+4b+c\right)}}+\sqrt{\frac{\left(c+a\right)^3}{ca\left(4c+4a+b\right)}}\ge2\sqrt{2}\)(đpcm)
Ta có : \(\frac{1}{a+b+c}=\frac{a+4b-c}{c}=\frac{b+4c-a}{a}=\frac{c+4a-b}{b}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{1}{a+b+c}=\frac{a+4b-c}{c}=\frac{b+4c-a}{a}=\frac{c+4a-b}{b}\)
\(=\frac{a+4b-c+b+4c-a+c+4a-b}{a+b+c}=\frac{4\left(a+b+c\right) }{a+b+c}=4\)
Có : \(\frac{1}{a+b+c}=4\Leftrightarrow1=4\left(a+b+c\right)\Rightarrow a+b+c=\frac{1}{4}\)
Đến đây tự làm nốt
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{1}{a+b+c}=\frac{a+4b-c+b+4c-a+c+4a-b}{a+b+c}\)
\(=\frac{4\left(a+b+c\right)}{a+b+c}=4\)
\(\Rightarrow\left\{{}\begin{matrix}4c=a+4b-c\\4a=b+4a-a\\4b=c+4a-b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5c=a+4b\\5a=b+4c\\5b=c+4a\end{matrix}\right.\)
\(\Rightarrow a=b=c\)
\(P=\left(2+\frac{a}{b}\right)\left(3+\frac{b}{c}\right)\left(4+\frac{c}{a}\right)\)
\(=\left(2+1\right)\left(3+1\right)\left(4+1\right)\)
\(=3.4.5=60\)
Vậy .............
Cái đề thiếu dấu " = " kìa -__-
Trừ mỗi vế cho 1, ta có:
\(\frac{b-16a+16c}{4a}=\frac{c-16b+16a}{4b}=\frac{a-16c+16b}{4c}=\frac{a+b+c}{4.\left(a+b+c\right)}=\frac{1}{4}\)(vì a,b,c > 0 nên a+b+c>0)
\(\Leftrightarrow\hept{\begin{cases}b+16c=17a\\c+16a=17b\\a+16b=17c\end{cases}}\Leftrightarrow a=b=c\)
tự thay vào