K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2019

Vì tam giác ABC là tam giác cân nên AM vừa là đường cao vừa là phân giác của góc A

\(\Rightarrow\widehat{MAC}=\frac{70^0}{2}=35^0\)

\(\widehat{ACM}=90^0-35^0=55^0\)

25 tháng 3 2019

Tam giác ABC cân tại A có AM là đường cao 

suy ra AM là phân giác ABC 

Nên AMB=AMC=70/2=35,5

Xét tam giác AMC có

AMC+ACM+MAC=180

90+ACM+35.5=180

nên ACM=54.5

29 tháng 11 2023

Xét ΔABC có \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)

=>\(\widehat{ACB}=180^0-70^0-60^0=50^0\)

AM là phân giác của góc BAC

=>\(\widehat{BAM}=\widehat{CAM}=\dfrac{1}{2}\cdot\widehat{BAC}=\dfrac{1}{2}\cdot70^0=35^0\)

Xét ΔAMC có \(\widehat{AMC}+\widehat{C}+\widehat{CAM}=180^0\)

=>\(\widehat{AMC}+35^0+60^0=180^0\)

=>\(\widehat{AMC}=85^0\)

a) Xét ΔABD vuông tại D và ΔACE vuông tại E có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE(cạnh huyền-góc nhọn)

Suy ra: BD=CE(hai cạnh tương ứng)

b) Ta có: ΔABD=ΔACE(cmt)

nên AD=AE(hai cạnh tương ứng)

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

28 tháng 2 2020

b2 :

a, xét tam giác ABD và tam giác ACE có: góc A chung

AB = AC do tam giác ABC cân tại A (gt)

góc ADB = góc AEC = 90

=> tam giác ABD = tam giác ACE (ch-cgv)

b, tam giác ABD = tam giác ACE (câu a)

=> góc ABD = góc ACE (đn)

góc ABC = góc ACB do tam giác ABC cân tại A (gt)

góc HBC = góc ABC - góc ABD

góc HCB = góc ACB - góc ACE 

=> góc HBC = góc HCB 

=> tam giác HBC cân tại H (Dh)

còn câu 1

Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC ) a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BACb) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.c) Chứng minh rằng tam giác MDE đềud) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cmBài 2: Cho tam giác ABC vuông tại B,...
Đọc tiếp

Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC )

 a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BAC

b) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.

c) Chứng minh rằng tam giác MDE đều

d) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cm

Bài 2: Cho tam giác ABC vuông tại B, kẻ AI là tia phân giác của góc BAC, IH vuông góc với AC tại H.

a. Chứng minh tam giác ABI = tam giác AHI

b. HI  cắt AB tại K. Chứng tỏ rằng BK=HC

c. Chứng minh rằng BH // KC

d. Qua C kẻ đường thẳng song song với HK, cắt AI tại O. Tìm điều kiện của tam giác ABC để tam giác CIO đều

Bài 3: Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC ( H thuộc BC)

a.  Chứng minh : tam giác AHB= tam giác AHC

b. Gỉa sử AB = AC = 5cm, BC = 8cm. Tính độ dài AH

c. Trân tia đối của tai HA lấy điểm M sao cho HM - HA. chứng minh tam giác ABM cân

d. Chứng minh BM // AC

0
5 tháng 3 2023

ê

17 tháng 6 2017

đề sai rồi

30 tháng 9 2017

Bạn tìm bài này theo đường link này nha!

https://olm.vn/hoi-dap/question/36403.html

chúc bạn may mắn