\(\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{2017^3}< \frac{1}{2^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(CM:\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2017^2}+\frac{1}{2018^2}< \frac{3}{4}\)
\(=\frac{1}{2^2+3^2+4^2+...+2017^2+2018^2}\)
\(=\frac{1}{4044}\)
\(\Rightarrow\frac{1}{4044}< \frac{3}{4}\)
P/s: Ko chắc đâu nhé
\(\frac{1}{4}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}< \frac{1}{4}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2017\cdot2018}\)
\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{2018}\)
\(=\frac{3}{4}-\frac{1}{2018}< \frac{3}{4}\)
\(=>\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2018^2}< \frac{3}{4}\)
Ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}\)
\(=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(=\left(\frac{\sqrt{n}}{\sqrt{n+1}}+1\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Từ đây ta có
\(VT< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2017}}-\frac{1}{\sqrt{2018}}\right)\)
\(=2\left(1-\frac{1}{\sqrt{2018}}\right)< 2\)
Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}\)
\(\Leftrightarrow\sqrt{n}\left(\frac{1}{n}-\frac{1}{n1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\). Mà:
\(\left(\frac{\sqrt{n}}{\sqrt{n+1}}+1\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Từ đó, ta có:
\(VT< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{2017}}-\frac{1}{\sqrt{2018}}\right)\)
\(=2\left(1-\frac{1}{\sqrt{2018}}\right)< 2\) (ĐPCM)
VT<1/(3^2-1)+1/(5^2-1)+...+1/(2017^2-1)=1/(2.4)+1/(4.6)+...+1/(2016.2018)
=1/2 . (1/2-1/4+1/4-1/6+...+1/2016-1/2018)=1/4-1/(2.2018)<1/4
Ta có: \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2017}}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2016}}\)
\(2A=3A-A=1-\frac{1}{3^{2017}}\)
=> \(A=\left(1-\frac{1}{3^{2017}}\right):2\)
\(A=\frac{1}{2}-\frac{1}{3^{2017}}:2< \frac{1}{2}\)
Vậy: \(A< \frac{1}{2}\)
C/M công thức tổng quát:\(n^3>n^3-n\Rightarrow\frac{1}{n^3}< \frac{1}{n^3-n}=\frac{1}{n\left(n^2-1\right)}=\frac{1}{\left(n-1\right)n\left(n+1\right)}\)
\(\Rightarrow\frac{1}{n^3}< \frac{1}{\left(n-1\right)n\left(n+1\right)}\)
Đặt \(A=\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+\frac{1}{5^3}+.....+\frac{1}{2017^3}\)
Áp dụng vào bài toán,ta được:\(A< \frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+....+\frac{1}{2016\cdot2017\cdot2018}\)
\(=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+....+\frac{1}{2016\cdot2017}-\frac{1}{2017\cdot2018}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2017\cdot2018}\right)\)
\(=\frac{1}{4}-\frac{1}{2\cdot2017\cdot2018}\)
\(< \frac{1}{2^2}^{ĐPCM}\)