Giải phương trình:
\(\sqrt{x+\sqrt{14x-49}}+\sqrt{x-\sqrt{14x-49}}=\sqrt{14}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x+\sqrt{14x-49}}+\sqrt{x-\sqrt{14x-49}}=\sqrt{14}\)
=>\(\sqrt{14}\left(\sqrt{x+\sqrt{14x-49}}+\sqrt{x-\sqrt{14x-49}}\right)=14\)
<=>\(\sqrt{14x+14\sqrt{14x-49}}+\sqrt{14x-14\sqrt{14x-49}}=14\)
<=>\(\sqrt{\left(\sqrt{14x-49}+7\right)^2}+\sqrt{\left(\sqrt{14x-49}-7\right)^2}=14\)
+,với x \(\ge\) 7
\(2\sqrt{14x-49}=14\)
<=>x=7
+,với 3,5\(\le\)x<7
\(\sqrt{14x-49}+7+7-\sqrt{14x-49}=14\)
<=>14=14 ( luôn đúng với mọi x thỏa mãn đkxđ)
ĐKXĐ:...
Bình phương 2 vế ta được:
\(2x+2\sqrt{x^2-14x+49}=14\)
\(\Leftrightarrow x-7+\sqrt{\left(x-7\right)^2}=0\)
\(\Leftrightarrow x-7+\left|x-7\right|=0\)
- Với \(\frac{49}{14}\le x\le7\Rightarrow...\)
- Với \(x>7\Rightarrow...\)
Đơn giản nên bạn tự phá trị tuyệt đối và giải
a/ ĐKXĐ: \(x\ge1\)
Khi \(x\ge1\) ta thấy \(\left\{{}\begin{matrix}VT>0\\VP=1-x\le0\end{matrix}\right.\) nên pt vô nghiệm
b/ \(x\ge1\)
\(\sqrt{\sqrt{x-1}\left(x-2\sqrt{x-1}\right)}+\sqrt{\sqrt{x-1}\left(x+3-4\sqrt{x-1}\right)}=\sqrt{x-1}\)
\(\Leftrightarrow\sqrt{\sqrt{x-1}\left(\sqrt{x-1}-1\right)^2}+\sqrt{\sqrt{x-1}\left(\sqrt{x-1}-2\right)^2}=\sqrt{x-1}\)
Đặt \(\sqrt{x-1}=a\ge0\) ta được:
\(\sqrt{a\left(a-1\right)^2}+\sqrt{a\left(a-2\right)^2}=a\)
\(\Leftrightarrow\left[{}\begin{matrix}a=0\Rightarrow x=1\\\sqrt{\left(a-1\right)^2}+\sqrt{\left(a-2\right)^2}=\sqrt{a}\left(1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left|a-1\right|+\left|a-2\right|=\sqrt{a}\)
- Với \(a\ge2\) ta được: \(2a-3=\sqrt{a}\Leftrightarrow2a-\sqrt{a}-3=0\Rightarrow\left[{}\begin{matrix}\sqrt{a}=-1\left(l\right)\\\sqrt{a}=\frac{3}{2}\end{matrix}\right.\)
\(\Rightarrow a=\frac{9}{4}\Rightarrow\sqrt{x-1}=\frac{9}{4}\Rightarrow...\)
- Với \(0\le a\le1\) ta được:
\(1-a+2-a=\sqrt{a}\Leftrightarrow2a+\sqrt{a}-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x-1}=1\Rightarrow...\)
- Với \(1< a< 2\Rightarrow a-1+2-a=\sqrt{a}\Leftrightarrow a=1\left(l\right)\)
c/ ĐKXĐ: \(x\ge\frac{49}{14}\)
\(\Leftrightarrow\sqrt{14x-49+14\sqrt{14x-49}+49}+\sqrt{14x-49-14\sqrt{14x-49}+49}=14\)
\(\Leftrightarrow\sqrt{\left(\sqrt{14x-49}+7\right)^2}+\sqrt{\left(\sqrt{14x-49}-7\right)^2}=14\)
\(\Leftrightarrow\left|\sqrt{14x-49}+7\right|+\left|7-\sqrt{14x-49}\right|=14\)
Mà \(VT\ge\left|\sqrt{14x-49}+7+7-\sqrt{14x-49}\right|=14\)
Nên dấu "=" xảy ra khi và chỉ khi:
\(7-\sqrt{14x-49}\ge0\)
\(\Leftrightarrow14x-49\le49\Leftrightarrow x\le7\)
Vậy nghiệm của pt là \(\frac{49}{14}\le x\le7\)
a) ĐK : \(x\ge1\)
pt <=> \(\sqrt{3^2\left(x-1\right)}-\frac{1}{2}\sqrt{2^2\left(x-1\right)}=2\)
<=> \(\left|3\right|\sqrt{x-1}-\frac{1}{2}\cdot\left|2\right|\sqrt{x-1}=2\)
<=> \(3\sqrt{x-1}-1\sqrt{x-1}=2\)
<=> \(2\sqrt{x-1}=2\)
<=> \(\sqrt{x-1}=1\)
<=> \(x-1=1\)=> \(x=2\)( tm )
b) \(3x-\sqrt{49-14x+x^2}=15\)
<=> \(\sqrt{x^2-14x+49}=3x-15\)
<=> \(\sqrt{\left(x-7\right)^2}=3x-15\)
<=> \(\left|x-7\right|=3x-15\)(1)
Với x < 7
(1) <=> 7 - x = 3x - 15
<=> -x - 3x = -15 - 7
<=> -4x = -22
<=> x = 11/2 ( tm )
Với x ≥ 7
(1) <=> x - 7 = 3x - 15
<=> x - 3x = -15 + 7
<=> -2x = -8
<=> x = 4 ( ktm )
Vậy x = 11/2
a) \(ĐKXĐ:x\ge1\)
\(\sqrt{9x-9}-\frac{1}{2}\sqrt{4x-4}=2\)
\(\Leftrightarrow\sqrt{9.\left(x-1\right)}-\frac{1}{2}.\sqrt{4\left(x-1\right)}=2\)
\(\Leftrightarrow3\sqrt{x-1}-\frac{1}{2}.2\sqrt{x-1}=2\)
\(\Leftrightarrow3\sqrt{x-1}-\sqrt{x-1}=2\)
\(\Leftrightarrow2\sqrt{x-1}=2\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\)\(\Leftrightarrow x=2\)( thỏa mãn ĐKXĐ )
Vậy phương trình có nghiệm là \(x=2\)
b) \(3x-\sqrt{49-14x+x^2}=15\)
\(\Leftrightarrow3x-\sqrt{\left(7-x\right)^2}=15\)
\(\Leftrightarrow3x-\left|7-x\right|=15\)
+) TH1: Nếu \(7-x< 0\)\(\Leftrightarrow x>7\)
thì \(3x-\left(x-7\right)=15\)
\(\Leftrightarrow3x-x+7=15\)\(\Leftrightarrow2x=8\)
\(\Leftrightarrow x=4\)( không thỏa mãn )
+) TH2: Nếu \(7-x\ge0\)\(\Leftrightarrow x\le7\)
thì \(3x-\left(7-x\right)=15\)
\(\Leftrightarrow3x-7+x=15\)
\(\Leftrightarrow4x=22\)\(\Leftrightarrow x=\frac{22}{4}\)( thỏa mãn ĐKXĐ )
Vậy nghiệm của phương trình là \(x=\frac{22}{4}\)
a/ \(\sqrt{x^2-14x+49}+4x-7=0\)
\(\Leftrightarrow\sqrt{\left(x-7\right)^2}=7-4x\)
\(\Leftrightarrow\left|x-7\right|=7-4x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-7=7-4x\\x-7=4x-7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{14}{5}\left(KTM\right)\\x=0\left(TM\right)\end{matrix}\right.\)
Vậy pt có 1 nghiệm x = 0
b/ đkxđ: x ≥2
\(\sqrt{x+2+4\sqrt{x-2}}=4\sqrt{x-2}-5\)
Đặt \(\sqrt{x-2}\) = t (t ≥ 0)
PT \(\Leftrightarrow\sqrt{t^2+4t+4}=4t-5\)
\(\Leftrightarrow\sqrt{\left(t+2\right)^2}=4t-5\)
\(\Leftrightarrow\left|t+2\right|=4t-5\)
Vì t ≥ 0 => t + 2 > 0
=> \(t+2=4t-5\)
\(\Leftrightarrow-3t=-7\Leftrightarrow t=\dfrac{7}{3}\left(TM\right)\)
\(\Rightarrow\sqrt{x-2}=\dfrac{7}{3}\Rightarrow x-2=\dfrac{49}{9}\)
\(\Leftrightarrow x=\dfrac{67}{9}\)(TM)
Vậy pt có nghiệm \(x=\dfrac{67}{9}\)
a: ĐKXĐ: x>=5
\(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\cdot\sqrt{9x-45}=4\)
=>\(2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\)
=>\(2\sqrt{x-5}=4\)
=>\(\sqrt{x-5}=2\)
=>x-5=4
=>x=9(nhận)
b: ĐKXĐ: x>=1/2
\(\sqrt{2x-1}-\sqrt{8x-4}+5=0\)
=>\(\sqrt{2x-1}-2\sqrt{2x-1}+5=0\)
=>\(5-\sqrt{2x-1}=0\)
=>\(\sqrt{2x-1}=5\)
=>2x-1=25
=>2x=26
=>x=13(nhận)
c: \(\sqrt{x^2-10x+25}=2\)
=>\(\sqrt{\left(x-5\right)^2}=2\)
=>\(\left|x-5\right|=2\)
=>\(\left[{}\begin{matrix}x-5=2\\x-5=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=3\end{matrix}\right.\)
d: \(\sqrt{x^2-14x+49}-5=0\)
=>\(\sqrt{x^2-2\cdot x\cdot7+7^2}=5\)
=>\(\sqrt{\left(x-7\right)^2}=5\)
=>|x-7|=5
=>\(\left[{}\begin{matrix}x-7=5\\x-7=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=12\\x=2\end{matrix}\right.\)
\(a,\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\left(đkxđ:x\ge5\right)\\ \Leftrightarrow\sqrt{4\left(x-5\right)}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9\left(x-5\right)}=4\\ \Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\\ \Leftrightarrow2\sqrt{x-5}=4\\ \Leftrightarrow\sqrt{x-5}=2\\ \Leftrightarrow x-5=4\\ \Leftrightarrow x=9\left(tm\right)\)
\(b,\sqrt{2x-1}-\sqrt{8x-4}+5=0\left(đkxđ:x\ge\dfrac{1}{2}\right)\\ \Leftrightarrow\sqrt{2x-1}-\sqrt{4\left(2x-1\right)}=-5\\ \Leftrightarrow\sqrt{2x-1}-2\sqrt{2x-1}=-5\\ \Leftrightarrow-\sqrt{2x-1}=-5\\ \Leftrightarrow\sqrt{2x-1}=5\\ \Leftrightarrow2x-1=25\\ \Leftrightarrow2x=26\\ \Leftrightarrow x=13\left(tm\right)\)
\(c,\sqrt{x^2-10x+25}=2\\ \Leftrightarrow\sqrt{\left(x-5\right)^2}=2\\ \Leftrightarrow\left|x-5\right|=2\\ \Leftrightarrow\left[{}\begin{matrix}x-5=2\\x-5=-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=7\\x=3\end{matrix}\right.\)
\(d,\sqrt{x^2-14x+49}-5=0\\ \Leftrightarrow\sqrt{\left(x-7\right)^2}=5\\ \Leftrightarrow\left|x-7\right|=5\\ \Leftrightarrow\left[{}\begin{matrix}x-7=5\\x-7=-5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=12\\x=2\end{matrix}\right.\)
ĐK:(tự tìm)
Bình phương 2 vế
\(\Rightarrow2x+2\sqrt{x^2-14x+49}=14\)
\(\Leftrightarrow2x+2\sqrt{\left(x-7\right)^2}=14\)
\(\Leftrightarrow2x+2\left|x-7\right|=14\)
Xét \(x\ge7\)\(\Rightarrow2x+2x-14=14\)
\(\Leftrightarrow x=7\left(tm\right)\)
Xét x<7\(\Rightarrow2x-2x+14=14\)
\(\Leftrightarrow14=14\)(luôn đúng)
Thử lại,kết hợp với đk rồi kết luận
ĐK : \(x\ge\frac{7}{2}\)
Đặt \(\sqrt{14x-49}=a\) , ta có :
\(\sqrt{x+a}+\sqrt{x-a}=\sqrt{14}\)
\(\Leftrightarrow\left(\sqrt{x+a}+\sqrt{x-a}\right)^2=14\)
\(\Leftrightarrow x+a+x-a+2\sqrt{x^2-a^2}=14\)
\(\Leftrightarrow2x+2\sqrt{x^2-14x+49}=14\)
\(\Leftrightarrow2x+2\left|x-7\right|=14\)
TH 1 : \(x\ge7\) \(\Rightarrow4x-14=14\Leftrightarrow x=7\) ( t/m )
TH 2 : \(\frac{7}{2}\le x\le7\)
\(\Rightarrow2x+14-2x=14\)
\(\Leftrightarrow14=14\) ( t/m )
Vậy ...