Cho tam giác ABC vuông tại A (AB<AC) . Vẽ đường trung tuyến BM của tam giác ABC trên tia đối của MB lấy điểm D sao cho MD=MB
a) CM: AB=CD , \(AC\perp CD\)
b) CM : AB+BC>2BM
c) CM: \(\widehat{CBM}< \widehat{ABM}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
kẻ đường cao AH ta có \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
AD và AE là hai tia phân giác cả hai góc kề bù => AD _|_ AE
AH là đường cao của tam giác vuông ADE ta có
\(\frac{1}{AH^2}=\frac{1}{AD^2}+\frac{1}{AE^2}\)
vậy \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AD^2}+\frac{1}{AE^2}\)
\(\widehat{C}=30^0\Rightarrow\widehat{B}=60^0\)
\(sinC=\frac{AB}{BC}\Leftrightarrow BC=\frac{AB}{sinC}=\frac{10}{sin30^0}=20\left(cm\right)\)
\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{20^2-10^2}=10\sqrt{3}\left(cm\right)\) (PITAGO)
\(\widehat{C}=30^0\Rightarrow\widehat{B}=60^0\)
\(\sin C=\frac{AB}{BC}\Leftrightarrow BC=\frac{AB}{\sin C}=\frac{10}{\sin30^0}=20\left(cm\right)\)
\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{20^2-10^2}=10\sqrt{3}\left(cm\right)\)
# Hok_tốt nha
a) Xét ΔADB vuông tại D và ΔADC vuông tại D có
AB=AC(ΔABC cân tại A)
AD chung
Do đó: ΔADB=ΔADC(cạnh huyền-cạnh góc vuông)
a, \(\Delta BAM=\Delta DCM\left(c.g.c\right)\Rightarrow\hept{\begin{cases}AB=CD\\\widehat{BAM}=\widehat{DCM}\end{cases}}\)
Mà \(\widehat{BAM}=90^0\left(\widehat{BAC}=90^0\right)\Rightarrow\widehat{DCM}=90^0\Rightarrow AC\perp CD\)
b, MB = MD (gt) và \(M\in BD\Rightarrow\) M là trung điểm của BD \(\Rightarrow BD=2BM\)
Áp dụng bất đẳng thức tam giác vào \(\Delta BCD:CD+BC>BD\)
\(\Rightarrow AB+BC>2BM\)(vì AB = CD, BD = 2BM)
c, Tam giác ABC vuông tại A \(\Rightarrow AB< BC\) (trong tam giác vuông, cạnh huyền lớn nhất)
\(\Rightarrow CD< BC\Rightarrow\widehat{CBD}< \widehat{D}\) (quan hệ giữa góc và cạnh đối diên trong tam giác BCD)
\(\Delta BAM=\Delta DCM\left(cmt\right)\Rightarrow\widehat{ABM}=\widehat{D}\)
Do đó: \(\widehat{CBD}< \widehat{ABM}\Rightarrow\widehat{CBM}< \widehat{ABM}\)
Chúc bạn học tốt.