OLM cung cấp gói bải giảng điện tử PPT cho giáo viên đầu năm học
Thi thử và xem hướng dẫn giải chi tiết đề tham khảo 12 môn thi Tốt nghiệp THPT 2025
Tập huấn miễn phí ra đề kiểm tra và chấm phiếu trắc nghiệm dành cho giáo viên khối THCS
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho a,b,c là ba số khác 0 thỏa mãn \(\frac{ax-bx}{c}=\frac{cx-az}{b}=\frac{bz-ay}{a}\)
Chứng minh rằng :(ax+by+cz)2=(x2 +y2 +z2 )(a2 +b2 +c2 )
Đây là bất đẳng thức Bunhia Cốpxki bạn, lên mạng tra cách giải là đc!
Sai đề rồi bn
Cho ba số dương x,y,z thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\) chứng minh rằng với mọi a,b,c dương ta có \(\frac{1}{ax+by+cz}+\frac{1}{bx+cy+az}+\frac{1}{cx+ay+bz}\le\frac{1}{a+b+c}\)
Bài 3 Chứng minh rằng với a, b, c, x, y, z (trong đó xyz 6= 0) thỏa mãn (a2 + b2 + c2)(x2 + y2 + z2) = (ax + by + cz)2
thì a/x =b/y =c/z.
Cho 3 số a,b,c khác 0 thỏa mãn: (ay - bx)/c= (cx-az)/b=(bz-cy)/a. Chứng minh : (ax+by+cz)^2=(a^2+b^2+c^2)(x^2+y^2+z^2)
Cho a,b,c là 3 số khác 0 thỏa mãn \(\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}\)
CMR \(\left(ax+by+cz\right)^2=\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)
Bình phương ba vế suy ra \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
Sau đó chứng minh tương tự bunhiacopxki
CMR nếu a,b,c,x,y,z thỏa mãn điều kiện:
\(\frac{bz+cy}{x\left(-ax+by+cz\right)}=\frac{cx+az}{y\left(ax-by+cz\right)}=\frac{ay+bx}{z\left(ax+by-cz\right)}\)
thì \(\frac{x}{a\left(b^2+c^2-a^2\right)}=\frac{y}{b\left(a^2+c^2-b^2\right)}=\frac{z}{c\left(a^2+b^2-c^2\right)}\)
( Giả thiết các tỉ số đều có nghĩa )
CMR nếu a,b,c,x,y,z thỏa mãn :
( giả thiết các tỉ số đều có nghĩa )
Cho : bz+ay/x*(-ax+by+cz)=cx+az/y*(ax-by+cz)=ay+bx/z(ax+by-cz)
C/m : ay+bx/c=bz+ay/a=cx+az/b
Chứng minh rằng nếu: thì (x2 + y2 + z2) (a2 + b2 + c2) = (ax + by + cz)2
Nếu cái j?
nếu = nhau
Đây là bất đẳng thức Bunhia Cốpxki bạn, lên mạng tra cách giải là đc!
Sai đề rồi bn