Cho tỉ lệ thức \(\frac{x}{3}=\frac{y}{4}.\)Tính A=\(\frac{\text{4x^2+3y^2}}{28xy}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\orbr{\begin{cases}2x-3y=3\\x+2y=2\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}4x-6y=6\\3x+6y=6\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}7x=12\\3x+6y=6\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{12}{7}\\3x+6y=6\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{12}{7}\\y=\frac{1}{7}\end{cases}}\)
Vậy tỉ lệ thức \(\frac{y}{x}=\frac{1}{12}\)
x, y tỉ lệ nghịch vs 2, 3
=> 2.x=3.y=> \(x=\frac{3}{2}y\)
y, z tỉ lệ thuận với 4, 3
=> \(\frac{y}{4}=\frac{z}{3}\Rightarrow z=\frac{3}{4}y\)
Em thay vào tính nhé
Ta có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}.\)
=> \(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\) và \(x+y-z=38.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y-z}{\frac{3}{2}+\frac{4}{3}-\frac{5}{4}}=\frac{38}{\frac{19}{12}}=24.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{\frac{3}{2}}=24\Rightarrow x=24.\frac{3}{2}=36\\\frac{y}{\frac{4}{3}}=24\Rightarrow y=24.\frac{4}{3}=32\\\frac{z}{\frac{5}{4}}=24\Rightarrow z=24.\frac{5}{4}=30\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(36;32;30\right).\)
Chúc bạn học tốt!
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{2x+3y-4z}{3+4-5}\frac{38}{2}=19\)
\(\frac{2x}{3}=19=>x=19x3:2=26\)
\(\frac{3y}{4}=19=>y=19x4:3=25.3\)
\(\frac{4z}{5}=19=>z=19x5:4=23.75\)
\(\frac{5x-2y}{x+3y}=chong.copy.linhtinh\Leftrightarrow20\left(\frac{x}{y}\right)-8=7\left(\frac{x}{y}\right)+21\Rightarrow13\left(\frac{x}{y}\right)=29\)
\(\Rightarrow copy.linhtinh=bieuthuc\)không hiểu nhận được qua tin nhắn (hiểu rồi thì càng tốt)
\(\frac{x}{y}=\frac{29}{13}\)
Theo đề ta có: \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Đặt: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\left(k\inℕ^∗\right)\)
Suy ra: \(x=3k;y=4k;z=5k\) Thay vào biểu thức P ta có:
\(P=\frac{3k+8k+15k}{6k+12k+20k}+\frac{6k+12k+20k}{9k+16k+25k}+\frac{9k+16k+25k}{12k+20k+30k}\)
\(P=\frac{26k}{38k}+\frac{38k}{50k}+\frac{50k}{62k}=\frac{13}{19}+\frac{19}{25}+\frac{25}{31}=\frac{33141}{14725}\)
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot2+3\cdot3-4}=5\)
Do đó: x-1=10; y-2=15; z-3=20
=>x=11; y=17; z=23
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó: x=18; y=16; z=15
c: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{2}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}\)
Trường hợp 1: 2x-3y+5z=-1
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{-1}{70}\)
Do đó: x=-15/70=-3/14; y=-10/70=-1/7; z=-14/70=-1/5
Trường hợp 2: 2x-3y+5z=1
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{1}{70}\)
Do đó: x=15/70=3/14; y=1/7; z=1/5
Ta có:
\(\left(2x-3y\right).3=\left(x+2y\right).2\)
\(2x.3-3y.3=x.2+2y.2\)
\(6x-9y=2x+4y\)
\(6x-2x=9y+4y\)
\(4x=13y\)
Chia hai vế cho 4y, ta có:
\(\frac{4x}{4y}=\frac{13y}{4y}\)
\(=\frac{x}{y}=\frac{13}{4}\)
\(\Rightarrow\) Tỉ số giữa x và y là \(\frac{13}{4}\)
Ta có:
\(\frac{2x-3y}{x+2y}=\frac{2}{3}\)
<=> 3(2x-3y)= 2(x+2y)
<=> 6x - 9y = 2x + 4y
<=> 6x - 2x = 9y+4y
<=> 4x = 13y
=> \(\frac{x}{y}=\frac{13}{4}\)
Ta có:
\(A=\frac{4x}{28y}+\frac{3y}{28x}\)
Mặt khác
\(\frac{x}{3}=\frac{y}{4}\Leftrightarrow4x=3y\)
\(\Rightarrow A=\frac{3y}{28y}+\frac{4x}{28x}=\frac{1}{4}\)
ta có x/3=y/4 suy ra 3y=4x
thay 4x=3y vào a ta đc A=6y^2/21y^2=6/21