Tìm a,b là số tự nhiên thỏa mãn:\(\left(20a+7b+3\right)\cdot\left(20^a+20a+b\right)=803\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\)
\(A=\left|x-2014\right|+\left|2015-x\right|+\left|2016-x\right|\)
\(A=\left|2015-x\right|+\left(\left|x-2014\right|+\left|2016-x\right|\right)\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A=\left|2015-x\right|+\left(\left|x-2014\right|+\left|2016-x\right|\right)\)
\(A=\left|x-2014\right|+\left|2016-x\right|\ge\left|x-2014+2016-x\right|\)
\(\Rightarrow A\ge\left|2\right|\)
\(\Rightarrow A\ge2.\)
Dấu '' = '' xảy ra khi:
\(\left\{{}\begin{matrix}x-2014\ge0\\2015-x=0\\2016-x\le0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge2014\\x=2015\\x\le2016\end{matrix}\right.\Rightarrow x=2015.\)
Vậy \(MIN_A=2\) khi \(x=2015.\)
Chúc bạn học tốt!
\(A=\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\)
\(=\left|x-2014\right|+\left|2016-x\right|+\left|x-2015\right|\ge\left|x-2014+2016-x\right|+\left|x-2015\right|\)
\(=2\)
Dấu " = " xảy ra \(\Leftrightarrow x=2015\)
Vậy .........
chúc bạn học tốt !
chúc bạn học tốt !
chúc bạn học tốt !
chúc bạn học tốt !
12,5 x a < 2010
↔a< 2010 : 12,5
↔a< 160,8
Vậy số tự nhiên a lớn nhất thỏa mãn là 160
ta có : 803 là số lẻ
=> ( 20a + 7b + 3 )( 20^a + 20a + b ) là số lẻ
=> 20a + 7b + 3 và 20^a + 20a + b là số lẻ
TH1 : nếu a khác 0
=> 20^a + 20a là là số chẵn
mà 20^a + 20a + b là số lẻ ( theo trên )
=> b lẻ
=> 20b + 3 chẵn
=> 20a + 7b + 3 chẵn ( loại )
TH2 : a = 0
=> (7b+3)(b+1) = 803 = 1. 803 = 11.73
vì b thuộc N
=> 7b + 3 > b+1
do đó
7b + 3 = 803 và b +1 = 1 => loại
hoặc 7b+3 = 73 và b +1 = 11 => b = 40
vậy a = 0 và b = 40
xl mik hỏi ngu