Tìm số tự nhiên n để M = 6n+1/3n+2
a. Có giá trị tự nhiên
b. Là phân số tự nhiên
c. Là phân số có thê rút gọn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi d là ước nguyên tố của 63 và 3n+1
63 chia hết cho d nên d=7
Để A rút gọn đc thì 3n+1 chia hết cho 7
=>3n-6 chia hết cho 7
=>n-2 chia hết cho 7
=>n=7k+2
a: Để A là số tự nhiên thì \(3n+1\in\left\{1;3;7;9;21;63\right\}\)
mà n là số tự nhiên
nên n=0 hoặc n=2
Đặt \(A=\frac{6n+99}{3n+4}=\frac{6n+8+91}{3n+4}=\frac{2\left(3n+4\right)91}{3n+4}+\frac{91}{3n+4}=2+\frac{91}{3n+4}\)
a) Để A là số tự nhiên thì \(91⋮3n+4⋮3n+4\)là ước của 91 hay 3n + 4 \(\in\left\{1;7;13;91\right\}\)
Ta có bảng :
3n + 4 | 1 | 7 | 13 | 91 |
n | -1 | 1 | 3 | 29 |
nhận xét | loại | thỏa mãn | thỏa mãn | thỏa mãn |
Vậy ......
b) Để A là phân số tối giản thì \(91\text{không chia hết cho 3n + 4 hay 3n + 4 không là ước của 91}\)
=> 3n + 4 ko chia hết cho ước nguyên tố của 91
=> 3n + 4 ko chia hết cho 7 => \(n\ne7k+1\)
=> 3n + 4 ko chia hết cho 13 => \(n\ne13m+3\)
a) \(A=\frac{8n+193}{4n+3}=\frac{2\left(4n+3\right)+187}{4n+3}=2+\frac{187}{4n+3}\)
Để \(A\inℕ\Rightarrow187⋮4n+3\Rightarrow4n+3\in\left\{17;11;187\right\}\)
+ \(4n+3=11\Leftrightarrow n=2\)
+ \(4n+3=187\Leftrightarrow n=46\)
+ \(4n+3=17\Leftrightarrow4n=14\) ( không tồn tại \(n\inℕ\))
Vậy n=2, 46
b) A tối giản khi 187 và 4n+3 có ƯCLN =1
\(\Rightarrow n\ne11k+2\left(k\inℕ\right)\)
\(n\ne17m+12\left(m\inℕ\right)\)
c) \(n=156\Rightarrow A=\frac{17}{19}\)
\(n=165\Rightarrow A=\frac{89}{39}\)
\(n=167\Rightarrow A=\frac{139}{61}\)
Để 6n+99/3n+4 là số tự nhiên thì 6n+99 chia hết cho 3n+4
=>6n+8+91 chia hết cho 3n+4
=>2(3n+4)+91 chia hết cho 3n+4
Mà 2(3n+4) chia hết cho 3n+4
=>91 chia hết cho 3n+4
=>3n+4\(\in\){1,7,13,91}
=>3n\(\in\){-3,3,9,87}
=>n\(\in\){-1,1,3,29}
Vì n là số tự nhiên nên n\(\in\){1,3,29}
a: Để A là số tự nhiên thì
6n+8+91 chia hết cho 3n+4
mà n>=0
nên \(3n+4\in\left\{7;13;91\right\}\)
=>n=1 hoặc n=3
b: Để A là phân số tối giản thì 3n+4 ko là ước của 91
=>3n+4<>7k và 3n+4<>13a
=>n<>(7k-4)/3 và n<>(13a-4)/3(k,a là các số tự nhiên)
Đặt \(A=\frac{6n+99}{3n+4}\)
Để A có giá trị là số tự nhiên thì 6n+99 phải chia hết cho 3n+4
Vì 6n+99 chia hết cho 3n+4
suy ra 6n+99 chia hết cho 2(3n+4)
suy ra 6n+99 chia hết cho 6n+8
Vậy suy ra 6n+99-(6n+8) chia hết cho 6n+8
91 chia hết cho 6n +8
Vậy suy ra 6n+8 thuộc ước của 91
Ư(91)={1;91;7;13}
th1 6n+8=1 suy ra n thuộc rỗng
th2 6n+8=7 suy ra n thuộc rỗng
th3 6n+8=13 suy ra n thuộc rỗng
th4 6n+8=91 suy ra n thuộc rỗng
Vậy ko có N hoặc đề bài sai
\(\frac{6n+99}{3n+4}=\frac{\left(6n+8\right)+91}{3n+4}=2+\frac{91}{3n+4}\)
để phân số đó thuộc N =>91 chia hết cho 3n+4
\(\Rightarrow3n+4\in\left\{1;7;13;91\right\}\)
\(\Rightarrow3n\in\left\{3;9;88\right\}\)
\(\Rightarrow n\in\left\{1;3\right\}\)