Cho ΔABC, M là trung điểm của BC. Kẻ AH ⊥ BC ( H∈BC). Lấy điểm D sao cho M là trung điểm AD. Lấy điểm K sao cho H là trung diểm AK. Nối BK, CD
a) Biết rằng AB = 12cm, AH = 5cm, tính độ dài BH
b) Chứng minh ΔBAK = ΔBKH
c) Chứng minh ΔACM = ΔKCM, từ đó suy ra KM = 1/2 AD
d) Chứng minh KD // BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình nha ! :v
a) Xét tam giác ABK có :
BH là đường cao của AK
Đồng thời cũng là đường trung tuyến của AK
=> \(\Delta ABK\) cân tại B
=> \(\widehat{BAK}=\widehat{BKA}\)
b) Xét \(\Delta ABM\)= \(\Delta DCM\) (theo trường hopwjc cạnh - góc - cạnh)
=> AB = CD
Mà AB = BK
=> BK = CD
c) Sửa : Chứng minh KD vuông góc với AK
Nối C với D
Xét tam giác AKD có :
HM cắt AK tại trung điểm H
HM cắt AD tại trung điểm M
=> HM là đường trung trực của tam giác AKD
=> HM // CD
Mà HM vuông góc với AK
=> KD vuông góc với AK
a: BC=15cm
b: Xét ΔABM có
BH là đường cao
BH là đường trung tuyến
Do đó: ΔABM cân tại B
c: Xét tứ giác ABNC có
K là trung điểm của BC
K là trung điểm của AN
Do đó: ABNC là hình bình hành
Suy ra: CN=AB
mà AB=BM
nên CN=BM
a: Xét ΔACH vuông tại H và ΔKCH vuông tại H có
HC chung
HA=HK
Do đó: ΔACH=ΔKCH
a. Xét ΔABC vuông tại A, có:
AB2 + AC2 = BC2 (Định lý Py-ta-go)
⇒ 62 + 82 = BC2 (thay số)
⇒ BC2 = 100
⇒ BC = 10
b) Có: AH vuông góc với BC (gt)
⇒ góc AHB = góc AHD (tính chất ....)
Xét ΔAHB và ΔAHD, có:
BH = HD (gt)
góc AHB = AHD (cmt)
AH chung
⇒ ΔAHB = ΔAHD (c.g.c)
⇒ AB = AD (cặp cạnh tương ứng) (đpcm)
a: Xét ΔABC có AH/AB=AK/AC
nên HK//BC
b: Xet ΔABC có HK//BC
nên AH/AB=HK/BC
=>HK/18=6/9=2/3
=>HK=12(cm)
c: Xét ΔABM có HI//BM
nên HI/BM=AI/AM
Xét ΔAMC có IK//MC
nên IK/MC=AI/AM
=>HI/BM=IK/MC
mà BM=CM
nên HI=IK
=>I là trung điểm của HK