Cm : \(3^{x+1}+3^{x+2}+3^{x+3}+...+3^{x+100}\) chia hết cho 120 ( x thuộc N )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=3^x(3+3^2+3^3+3^4)+(3^x+4)(3+3^2+3^3+3^4)+...
=3^x.120+(3^x+4).120+...
=120(3^x+3^x+4...) chia hết cho 120
=>x^3+1...(đề bài) chia hết cho 120
(Một số dấu ngoặc mk thêm để cho dễ nhìn nha)
Nhớ k cho mk đó!
=> ( 3x+1 + 3x+2 + 3x+3 + 3x+4 + 3x+5 ) + .... + ( 3x+96 + 3x+97 + 3x+98 + 3x+99 + 3x+100 )
=> 3x.( 3 + 32 + 33 + 34 ) + ... + 3x+95.( 3 + 32 + 33 + 34 )
=> 3x.120 + 3x+5.120 + .... + 3x+95 . 120
=> 120 . ( 3x + 3x+5 + ... + 3x+95 ) chia hết cho 120 ( đpcm )
Đặt A = 3x + 1 + 3x+2 +...+ 3x+100
A = 3x.3 + 3x.32 +...+ 3x.3100
A = 3x(3 + 32 +...+ 3100)
Đặt B = 3 + 32 +...+ 3100
= (3+32+33+34)+...+(397+398+399+3100)
= (3+32+33+34)+...+396(3+32+33+34)
= 120+...+396.120
= 120(1+...+396)
=> A = 3x.[120.(1+...+396)]
Vì 120 chia hết cho 120 nên 120(1+...+396) chia hết cho 120
=> A chia hết cho 120
3x . 3 + 3x . 32 + 3x . 33 +....+ 3x . 3100
3x (3 + 32 + 33 + 34) + 3x + 4 (3 + 32 + 33 + 34) + ....+ 3x + 96 (3 + 32 + 33 + 34)
(3x + 3x + 4 + ...+ 3x + 96) . (3 + 32 + 33 + 34)
(3x + 3x + 4 + ...+ 3x + 96) . 120 chia hết cho 120 (đpcm)
Đặt A = 3x + 1 + 3x + 2 + 3x + 3 + ... + 3x + 100
=> A = ( 3x + 1 + 3x + 2 + 3x + 3 + 3x + 4 ) + ( 3x + 5 + 3x + 6 + 3x + 7 + 3x + 8 ) + ... + ( 3x + 97 + 3x + 98 + 3x + 99 + 3100 )
=> A = 3x . ( 3 + 32 + 33 + 34 ) + 3x + 5 . ( 3 + 32 + 32 + 34 ) + ... + 3x + 97 . ( 3 + 32 + 33 + 34 )
=> A = 3x . 120 + 3x + 5 . 120 + ... + 3x + 97 . 120
=> A = ( 3x + 3x + 5 + ... + 3x + 97 ) . 120
Vì \(120⋮120\)nên \(\left(3^x+3^{x+5}+...+3^{x+97}\right).120⋮120\)hay \(A⋮120\)
~ Hok tốt ~
\(S=3^{x+1}+3^{x+2}+3^{x+3}+...+3^{x+100}=3^x\left(3+3^2+3^3+..3^{100}\right).Do..đó.\)
Ta chứng minh A = 3 + 32 + 33 + 34 + ..... + 399 + 3100 chia hết cho 120 . Tổng A có 100 số hạng.
- Chia tổng A thành 25 nhóm , mooic nhóm gồm 4 số hạng liên tiếp, kể từ số hạng đầu, mỗi nhóm như vậy có tổng chia hết cho 120 :
A = (3 + 32 + 33 + 34) + (x5 + x6 + x7 + x8 ) + ... + (x97 + x98 + x99 + x100 ) = x ( 1 + x + x2 + x3 ) + x2 ( 1 + x + x2 + x3 ) + ..... + x97 ( 1 + x + x2 + x3 ) = 40.(x + x2 + x3 + ... + x97 ) Chia hết cho 40 . Dễ thấy A chia hết cho 3, Mà 3 và 40 nguyên tố cùng nhau nên A chia hết cho 3x40 = 120
Do đó S = 3x.A chia hết cho 120 với mọi giá trị x là số tự nhiên.
$3^{x+1}+3^{x+2}+..........+3^{x+100}\\=3^x(3+3^2+.........+3^{100}$
Vì $3 \to 3^{100}$ có 100 số nên ta ghép 4 số vào 1 cặp
$\to 3^{x+1}+3^{x+2}+..........+3^{x+100}\\=3^x[(3+3^2+3^3+3^4)+......+3^{97}+3^{98}+3^{99}+3^{100}\\=3^x[120+...+3^{96}.120] \vdots 120(đpcm)$
=3^x.3 + 3^x.3^2 + 3^x.3^3 +...+ 3^x.3^100
=3^x . ( 3+3^2+3^3+3^4+...+3^100)
=3^x .( (3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+...+ (3^97+3^98+3^99+3^100)
=3^x . ( 120 + 3^4 .(3+3^2+3^3+3^4) +...+ 3^96 (3+3^2+3^3+3^4)
=3^x . ( 120+ 3^4. 120+...+3^96.120)
=3^x . 120 . (1+3^4+...+3^96)
chia hết cho 120( đây là cách giải lớp 6)