Tìm MIN của \(P=\frac{81x^2+18225x+1}{9x}-\frac{6\sqrt{x}+8}{x+1},x>0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left[\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-1\right)+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right]:\frac{6\sqrt{x}}{3\sqrt{x}+1}\)
\(A=\left[\frac{3x-2\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right].\frac{3\sqrt{x}+1}{6\sqrt{x}}\)
\(A=\frac{3x+3\sqrt{x}}{3\sqrt{x}-1}.\frac{1}{6\sqrt{x}}\)
\(A=\frac{3\sqrt{x}\left(\sqrt{x}+1\right)}{3\sqrt{x}-1}.\frac{1}{6\sqrt{x}}\)
\(A=\frac{\sqrt{x}+1}{6\sqrt{x}-2}\)
\(A=\frac{5}{6}\Leftrightarrow\frac{\sqrt{x}+1}{6\sqrt{x}-2}=\frac{5}{6}\)
\(\Leftrightarrow6\sqrt{x}+6=30\sqrt{x}-10\)
\(\Leftrightarrow24\sqrt{x}=16\)
\(\Leftrightarrow\sqrt{x}=\frac{2}{3}\Leftrightarrow x=\frac{4}{9}\)
\(A=\left[\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-1\right)+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right]\div\frac{6\sqrt{x}}{3\sqrt{x}+1}\)
\(A=\left[\frac{3x-2\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right]\times\frac{3\sqrt{x}+1}{6\sqrt{x}}\)
\(A=\frac{3x+3\sqrt{x}}{3\sqrt{x}-1}\times\frac{1}{6\sqrt{x}}\)
\(A=\frac{3\sqrt{x}\left(\sqrt{x}+1\right)}{3\sqrt{x}-1}\times\frac{1}{6\sqrt{x}}\)
\(A=\frac{\sqrt{x}+1}{6\sqrt{x}-2}\)
\(A=\frac{5}{6}\)
\(\Leftrightarrow\frac{\sqrt{x}+1}{6\sqrt{x}-2}=\frac{5}{6}\)
\(\Leftrightarrow6\sqrt{x}+6=30\sqrt{x}-10\)
\(\Leftrightarrow24\sqrt{x}=16\)
\(\Leftrightarrow\sqrt{x}=\frac{2}{3}\)
\(\Leftrightarrow x=\frac{4}{9}\)
2. Xem tại đây
1. \(P=\frac{1}{\sqrt{x.1}}+\frac{1}{\sqrt{y.1}}+\frac{1}{\sqrt{z.1}}\)
\(\ge\frac{1}{\frac{x+1}{2}}+\frac{1}{\frac{y+1}{2}}+\frac{1}{\frac{z+1}{2}}\)
\(=\frac{2}{x+1}+\frac{2}{y+1}+\frac{2}{z+1}\ge\frac{2.\left(1+1+1\right)^2}{x+y+z+3}=\frac{18}{3+3}=3\)
Đẳng thức xảy ra \(\Leftrightarrow x=y=z=1\)
1 ) có cách theo cosi đó
áp dụng cosi cho 3 số dương ta có \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x}}+x\ge3\sqrt[3]{\frac{1}{\sqrt{x}}\times\frac{1}{\sqrt{x}}\times x}=3\sqrt[3]{1}=3\)(1)
\(\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{y}}+y\ge3\)(2)
\(\frac{1}{\sqrt{z}}+\frac{1}{\sqrt{z}}+z\ge3\)(3)
cộng các vế của (1),(2),(3), đc \(2\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)+\left(x+y+z\right)\ge9\Rightarrow2P+3\ge9\Rightarrow P\ge3\)
minP=3 khi x=y=z=1
+) \(x+y+xy=8\Leftrightarrow\left(x+1\right)\left(y+1\right)=9\)
+) Đặt: \(a=\sqrt{x+1};b=\sqrt{y+1}\)
+) \(P=\frac{\sqrt{x+1}+\sqrt{y+1}}{\left(x+1\right)\left(y+1\right)-\left(x+1\right)-\left(y+1\right)+2}=\frac{a+b}{11-a^2-b^2}\)
\(\ge\frac{2\sqrt{ab}}{11-2ab}=\frac{2\sqrt{3}}{11-2\cdot3}=\frac{2\sqrt{3}}{5}\)
Dấu = xảy ra khi x = y = 2
+) \(P^2=\frac{x+y+8}{\left(xy+1\right)^2}=\frac{16-xy}{\left(xy+1\right)^2}\le\frac{16}{1}=4\)
\(\Rightarrow P\le4\)
Dấu = xảy ra khi \(\orbr{\begin{cases}x=8;y=0\\x=0;y=8\end{cases}}\)